MEMS Microthruster
Digital Propulsion System

January, 1998 MEMS Principal Investigator’s Meeting

Dr. David H. Lewis, Program Manager & PI
TRW Space & Electronics Group
Redondo Beach, CA

Dr. Erik K. Antonsson, PI
California Institute of Technology
Pasadena, CA

Dr. Siegfried W. Janson, PI
Aerospace Corp.
El Segundo, CA
MEMS Digital Propulsion
Microthrusters Have Advantages

- Physics of operation is straightforward
 - Individual plenums can be loaded with many types of propellants
 - Heating increases plenum pressure-ruptures MEMS fabricated blowout disk which delivers impulse to microsatellite

- Digital propulsion has advantages
 - Can deliver precise impulse bit for microsatellite applications for insertion, station keeping, attitude control, disposal
 - Pulsed design has operational advantages
 - No moving parts
 - Multiple propellant options
 - Variable plenum and throat dimensions for programmable thrust and impulse delivery
 - Up to ~10^6 engines or more per 10 cm. wafer

- Design scales directly to Meso- and Macroscale
Digital Propulsion Concept is Refined Through Three Hardware Builds

Task 5. MEMS Microthruster Propulsion System
- Management
- Reporting

Task 1. Proof of Concept
3 Configurations
- Design
- Test
- Fab
- Characterize

Task 2. Sub-Array Evaluations
2 Test Articles
- Design
- Test
- Fab
- Characterize

Downselect

Task 3. Full-Array Demonstration
1 Test Articles
- Design
- Test
- Fab
- Characterize
- Commercial foundry builds

Downselect

Task 4. Process Models and Analyses
MEMS Digital Propulsion
Microthrusters Prototype Have
Modular Design

Top Die
- Diaphragms on bottom, expansion nozzles on top

Middle Die
- Propellant fills individual holes

Bottom Die
- Polysilicon “ignitors” with direct inter-connects to bond pads (no electronics)
MEMS Digital Propulsion
Microthrusters Prototype Have Modular Design

- We have potentially 90 different bottom-middle-top combinations for configuration 1D alone.

- Top (diaphragm and nozzle) dice:
 - Silicon nitride (0.5 microns thick) on silicon (both sides)
 - One side forms mask
 - Laser-patterning exposes silicon
 - Other side forms diaphragm
 - KOH etch through wafer forms nozzle with diaphragm
 - 190, 290, and 390-micron square silicon nitride diaphragms

- Middle (propellant storage) dice:
 - FOTURAN (photosensitive glass by Schott) wafer, 1.5-mm-thick
 - Laser-patterning exposes 300, 500, and 700-micron diameter holes for propellant storage.

- Bottom (heater or ignitor) dice:
 - 1A: MOSIS fabrication Test suspended heater designs
 - 1B: MUMPS fabrication Test unsuspended polysilicon heaters
 - 1C: MUMPS fabrication Test bridge polysilicon heaters
 - 1D: In-house fabrication Test unsuspended and bridge-type polysilicon heaters
Top Dice Contains Diaphragms and Nozzles

- 400-micron-thick silicon wafer
- 0.5-micron-thick silicon nitride (both sides; from MCNC)
- Laser-patterned on top surface
- KOH etched down to bottom silicon nitride layer
- 190, 290, and 390-micron-square diaphragms
Middle Dice Contains Propellant Plenum

<table>
<thead>
<tr>
<th>300 micron dia.</th>
<th>500 micron dia.</th>
<th>700 micron dia.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Alignment holes**
- **Propellant cavities**
Bottom Dice Contains Several Heater/Ignitor Variants – 1A

MOSIS: 2-micron ORBIT Semiconductor Tiny Chips NIST Microheater Design

Run N76Y as Received

SEM of Run N76L Etched in EDP
Bottom Dice Contains Several Heater/Ignitor Variants – 1B

- MUMPS fabrication
- 2 resistor designs
- 2 spark gap designs
- 800-micron centers
- 10 “heaters” per sub-die
Example sub-die:

- 10-micron-wide heater
- 1500-Ohms
Bottom Dice Contains Several Heater/Ignitor Variants – 1D

- Common Ground
- Bond Pad
- Polysilicon Resistor
- Alignment Target
- Metal-on-poly Conductor

6 mm
Thrust Stand Components Have Been Fabricated

Balance pivot

Ball-release solenoids

Pendulum

Vacuum feed-through

Thruster “chip”

“Credit Card” Microcontroller
Prototype Digital Propulsion System
Has No Umbilicals

Infra-Red Serial Data Link

Microcontroller With Accelerometer
(Parallax “Basic Stamp” with Kistler 8303A1M2 MEMS accelerometer)

Batteries
(Two 9V batteries)

Mirror

10-cm Moment Arm

Microthrusters Mounted in DIP carrier

“poof!”

Optical Fiber to Laser Interferometer
(Precision Dynamics PD-1000; 10-nm accuracy with 2-mm travel)