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Evaluating Imprecision in Engineering Design
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William S. Law
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Doctor of Philosophy

Abstract

Imprecisionis uncertainty that arises because of vague or incomplete information. Prelimi-
nary design information is characteristically imprecise: specifications and requirements are
subject to change, and the design description is vague and incomplete. Yet many powerful
evaluation tools, including finite element models, expect precisely specified data. Thus it
is common for engineers to evaluate promising designs one by one. Alternatively, opti-
mization may be used to search for the single “best” design. These approaches focus on
individual, precisely specified points in the design space and provide limited information
about the full range of acceptable designs.

An alternative approach would be to evalusé¢sof designs. Thenethod of imprecision
uses the mathematics of fuzzy sets in order to represent imprecision as preferences among

designs:

¢ Functional requirements model the customer’s direct preference on performance vari-
ables based operformance considerationshe quantified aspects of design perfor-

mance represented by performance variables.

e Design preferences model the customer’s anticipated preference on design variables
based ordesign considerationghe unquantified aspects of design performance not

represented by performance variables.

Design preferences provide a formal structure for representing “soft” issues such as aes-

thetics and manufacturability and quantifying their consequences.



This thesis describes continuing work in bringing the method of imprecision closer
to implementation as a decision-making methodology for engineering design. The two
principal contributions of this work are a clearer interpretation of the elements that comprise
the method and a more efficient computational implementation.

The proposed method for modeling design decisions in the presence of imprecision is

defined in detail. The decision-maker is modeled as a hierarchy of preference aggrega

tion operations. Axioms for rational design decision-making are used to define aggregation
operations that are suitable for design. An electric vehicle design example illustrates the
method. In particular, the process of determining preferences and a preference aggregation
hierarchy is shown to be both feasible and informative. Efficient computational methods for
performing preference calculations are introduced. These methods use experiment design
to explore the design space and optimization assisted by linear approximation to map pref-
erences. A user-specified fractional precision allows the number of function evaluations
to be traded-off against the quality of the answer obtained. The computational methods
developed are verified on design problems from aircraft engine development and automo-
bile body design. Procedures for specifying preferences and group decision-making are
described. These procedures provide not only a pragmatic interpretation of the method,
but also an informal solution to the problem of bargaining: prerequisites for bringing the

method to design problems in the real world.
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Chapter 1

Introduction

To learn truly what each thing is, is a matter of uncertainty.

Democritus(ca460-€a 370 B.C.)

Imprecisionis uncertainty that arises because of vague or incomplete information. Pre-
liminary design information is characteristically imprecise: specifications and requirements
are subject to change, and the design description is vague and incomplete. Precise infor-
mation about the final design is usually not available. Yet many powerful evaluation tools,
including finite element models, expect precisely specified data. Thus it is common for en-
gineers to evaluate promising designs one by one. Alternatively, optimization may be used
to search for the single “best” design. But these approaches focus on individual, precisely
specified points in the design space and provide limited information about the full range
of possible designs under consideration. This is illustrated in Figure 1.1, where individual
designsﬁn the design variable spacéDVS are evaluated through a multi-dimensional
mappingf(cf) to obtain multiple measures of design performance impréormance vari-
able space(PVS. (The DVS is not necessarily Euclidearg., R", though the PVS is
usually assumed to be.) The information provided is local to the individual design points
evaluated and short of evaluating a large number of points there is no systematic provision
for exploring the full space of designs.

An alternative approach would be to evaluségsof designs, as illustrated in Figure 1.2.



DVS PVS
(Design Variable Space) (Performance V ariable Space)

Figure 1.1 Evaluating individual designs one by one.

DVS PVS

(f(d))

Figure 1.2 Evaluating sets of designs.



This seeks to provide information on the full range of acceptable designs. By distinguishing
subsets of designs that are in various ways preferred, this approach can explicitly model
design imprecision.

Themethod of imprecisioborrows the notion of membership in a fuzzy set in order to
represent preferences among designs. Fuzzy sets model uncertainty in categorization. The
set of tall men, for example, is fuzzy in that its boundaries are not precisely defined: it is
inaccurate to assume that a single, crisp heiglgt, 5 feet 9 inches, sharply distinguishes
tall men from not-tall men. Instead, membership, a real number between zero and one,
defines the degree to which an individual belongs to the set. In this example, the fuzziness
associated with the set of tall men is linguistic and stems from the inherent fuzziness in the
definition of “tall men.” Design imprecision is subtly different. The fuzziness associated
with a design specification is not fundamentally linguistic. Imprecise design information
is not fuzzy in meaning, but fuzzy in unresolved alternatives. Design imprecision is pro-
gressively reduced through design decisions until, ultimately, the final design is precisely
specified. Early in the design process, it is not clear to what degree each design alternative
reflects the final design that is as yet unknown. Although design imprecision is not a form
of uncertainty in meaning, it is still a form of uncertainty in categorization, for which fuzzy
sets are an appropriate representation. A direct application of fuzzy set theory would focus
on the membership of each design alternative in the set of possible final designs, presum-
ably also the set of best possible designs. This is, however, a somewhat esoteric notion and
thus instead of membership, the method of imprecision focuses on preferences: the actual
or anticipated preferences of the customer. This is a distinction in interpretation rather than
in mathematics, but it is nevertheless significant.

Simon French [17] has questioned the value of fuzzy setsor@mativeor prescriptive
theory of decision-making. In contrast to a descriptive decision analysis, a hormative de-
cision analysis seeks to advise or guide the decision-maker. French [17] distinguishes two

ways in which a normative analysis can guide decisions:



1. By example — through constructingnaodel decision problepinvoking amodel

decision-makerand hence arriving at an idealized yet representative decision.

2. Through the modeling process itself — defining a model decision-maker encourages

the exploration and clarification of the decision-maker’s own preferences and beliefs.

In this context, French [17] has raised three concerns, posed as questions, for fuzzy decision

analysis:

1. Is the model decision problem erected within a fuzzy analysis a suitable representa-

tion for real problems?

2. Do | (as the decision-maker) wish to emulate the “ideal” behavior exhibited by the

model decision-maker.,e., do | accept the underlying canons of rationality?

3. Is the process of constructing the model decision-maker as a reflection of me both
feasible and informative; and is it helpful in guiding the evolution of my beliefs and

preferences?

These three questions will be used as a basis for discussing the contributions of this thesis.
The practical value of the methods developed in this work will be demonstrated to directly

address French’s concerns.

1.1 Organization of Thesis

This thesis builds on the work of Wood and Antonsson [66, 67, 68, 69] and Otto and Anton-
sson [43, 44, 46, 47, 69]. Their work has laid a broad theoretical foundation for the method
of imprecision. The work described in this thesis seeks, through examining the specific
rather than the general, and the practical rather than the theoretical, to bring the method
closer to implementation in industry. Its two principal contributions are a clearer interpre-
tation of the elements that comprise the method and a practical and efficient computational
implementation.

Chapter 2 is concerned with modeling imprecision in engineering design. Sections 2.1

and 2.2 present key definitions that form the foundation for the model decision problem that



the method assumes. In particular, the modeling of imprecision in terms of preference is
defined. The model decision-maker is introduced in Sections 2.3 to 2.6. Axioms for rational
design decision-making are presented in Section 2.3. Section 2.4 discusses importance
weighting. In Section 2.7, an electric vehicle design example is presented to illustrate not
only the model decision problem and model decision-maker, but also the process by which
these models can be constructed. Section 2.8 surveys related work in design decision-
making under uncertainty.

Chapter 3 describes the algorithms used to perform preference calculations and dis-
cusses important issues in implementing the method of imprecision in a computational tool.
Section 3.1 describes previous work and motivates the development of improved methods
based on optimization (Section 3.2) and design of experiments (Section 3.4). The particular
difficulty addressed, that of mapping preference from the design variables to performance
variables, is discussed in detail in Section 3.3.

Chapter 4 introduces the Imprecise Design Tool, a computer program developed by
the author that implements the method of imprecision in order to verify the algorithms de-
scribed in Chapter 3 and to apply the method examples taken from industry. Two industrial
examples are presented: the first from aircraft engine development (Section 4.1) and the
second from automobile body design (Sections 4.2).

Chapter 5 discusses wider issues involved in implementing the method in industry. The
interpretation and specification of preferences is addressed in Section 5.1. Section 5.2
presents a scenario for implementation involving the electric vehicle example from Sec-
tion 2.7. An informal procedure for supporting group decisions is discussed. Section 5.3
lists the essential steps in the method of imprecision as presented in the electric vehicle
design scenario.

Chapter 6 summarizes the contributions of this thesis and returns to French’s three
concerns for fuzzy decision analysis. The work presented in this thesis addresses, within the
limited context of design decision-making under imprecision, each of French’s concerns.

Appendix A describes an algorithm to approximate a mapping through successively
subdividing the search space into tiles. This method ultimately proved to have severe lim-

itations. It is included for completeness and as an anecdote that speaks honestly about the



reality of research.



Chapter 2

Modeling Imprecision in Design

“Where shall | begin, please your Majesty?” he asked.
“Begin at the beginning,” the King said, gravely, “and go on till you come to

the end: then stop.”

Lewis Carroll (1832—-1898), “Alice’s Adventures in Wonderland”

This chapter begins with fundamental definitions that underpin the model decision prob-
lem assumed by the method of imprecision. The notion of preference and how it is used
to represent imprecision is introduced in Section 2.2. The model decision-maker is mani-
fested as the aggregation functions that trade-off preference. Section 2.3 presents axioms
that attempt to define necessary conditions for aggregation functions to exhibit rationality
in design decision-making. Section 2.4 discusses importance weighting and re-casts the
axioms of rational design decision-making to include weights. The suitability of the model
decision problem constructed is supported by examples throughout the chapter. A more
detailed example involving the design of an electric vehicle is presented in Section 2.7.
Section 2.8 surveys related work in design decision-making under uncertainty by other re-

search groups.

2.1 Basic Definitions

Definition 2.1 Thedesign variable spacer DVSis the set of design alternatives currently

under consideration. A



Definition 2.2 Thedesign variablesly, .., d,, are the attributes that distinguish alternative

designs in the DVS. A

Design variables need not be continuous: the design varsdlag may have the discrete
values “conservative” and “sporty.” The interval methods used to calculate imprecision,
however, require that discrete design variables are at least ordinal. Design variables do not
completely specify a design: they serve only to distinguish alternatives. Other attributes
of the design either are not under active consideration and have fixed values, or cannot be
directly specified and have uncontrolled values. Design variables serve to distinguish design
alternatives that the designer considers to be distinct for the purpose of analysis. Hence if
the designer is considering different lengths of a particular component, then that length
should be a design variable. Other variables, such as the width of the same component, do

not need to be design variables if they are not under active consideration.

Design variables should be independentdpshould be a function of the othéy, ..., d;_1, d;11, ...

This does not imply that variables cannot be related to each other in any way, but merely
that no variable be redundant. For example, two design varidaties diameterd; and

outer diameterd, are clearly related in that; < ds, but neither is a function of the other.
Tube thicknesds, however, is a function of; andds and should not be defined as a third
design variable. Note that in this particular example, it would probably be more convenient
to choose as design variabledhe thicknesand then eitheinner diameteror outer diame-

ter, to avoid having to ensure thainer diametemwas less thaouter diameter The choice

of design variables is thus not unique.

The set of valid values for the design varialijés denotedY;. The whole set of design
variables forms an vector,d, that distinguishes a particular design alternative in the DVS.
Distinct d define distinct design alternatives. Conversely, distinct design alternatives will
be described by distinet

In order to eliminate inferior design alternatives and refine the set of designs under con-
sideration, designs need to be evaluated. Design evaluation seeks to predict how well a
design alternative will perform when it is ultimately evaluated by the customer. “Perfor-

mance,” in general, has many aspects: rarely is it feasible to quantify all of them.



Definition 2.3 The performance variableg, ..., p, are the aspects of a design’s perfor-
mance that are explicitly quantified. Each performance varigpie defined by a mapping

—

fj such thatvj = fj(d) A

The mappingsfi, ..., f, can be any calculation or procedure to evaluate the performance
of a design, including closed-form equations, computational algorithms, “black box” func-
tions, prototype testing, and market research. A design variable can also be a measure of
design performance and hence a performance variabigight for example, could be a
design variable describing distinct design alternatives while also being a performance vari-
able that the customer is interested in. The set of valid values for a performance variable
p; is denoted);. The set of performance variables for each design alternative fogns a
vector,p’ = f (cf), that specifies the quantified performances of a deii@lther aspects of
performance which are not quantified are not formally modeled as performance variables,

and are excluded fromi.

Definition 2.4 The performance variable spacar PVSis the set of all quantified perfor-

- =

mancesy = f(d) that are acheivable by desigids DVS. A

2.2 Representing Imprecision

Design and performance variables are initially imprecise: they may potentially assume any
value within a possible range because the designer does not &mmeyi, the final value

that will emerge from the design process. Yet even though the designer does not know
which value will ultimately be specified, certain values will be preferred over others. This
preference is used to quantify the imprecision associated with a variable.

Performance variables attempt to predict how the design will perform in the eyes of
the customer, and hence for performance variables it is the customer’s preferences that
should be quantified, even if it is the designer who estimates them. Thus preferences on
the time required to accelerate from 0 to 60 mph for an automobile, for example, are the
customer’s anticipated preferences, even if the customer has no stated preference on the
0-60 time in particular: the 0—60 time correlates with the average acceleration over the

speed range of the engine [37], which in turn correlates with perceived acceleration and
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0 1 ‘
6S Os P1

Figure 2.1 Imprecise functional requirement “less than 8 seconds”.

vehicle performance. These issues, which together determine preferences on performance

variables, will be referred to geerformance considerations

Definition 2.5 The functional requiremeny,,. (p;) represents the preference that a cus-

tomer has for values of the performance varighle

fip; (pj) + Vi — [0,1] CR. A

tp; (p;) quantifies the customer’s preference for valuep,0énd is distinct from the cus-
tomary membership function in a fuzzy set, which quantifies the extent to which values
belong to the set. An example functional requirement on the performance vabiable
time might at first be given as “less than 8 seconds.” Further elicitation would reveal the
imprecision associated with the nominally crisp value “8 seconds,” resulting in a prefer-
ence functiony,,, wherep; is 0-60 time as shown in Figure 2.1. Values pf < 6s
have,, = 1 and are most preferred or ideal. Valuesppf> 9s havey,,, = 0 and are
unacceptable.

The basis for preferences among values of a design variable is less obvious. Design
variables distinguish alternative designs: two different values of a design vadabie
dicate two distinct designs, but the valuesdpfdo not indicate if one design is preferred
over the other. Design variables do not directly measure design performance and hence the

customer has no direct basis for preferring any particular design variable value. The length
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of the rear axle of an automobile, for example, is not a variable of much interest to the typi-
cal customer. Yet choosing different axle lengths will affect aspects of design performance
such as vehicle handling thate of interest to the customer. Some of these aspects will

be quantified and hence modeled as performance variables. The customer’s preferences
on these performance considerations are already represented as functional requirements.
Other aspects of design performance that are not directly related to explicitly quantified
performance variables are as yet not modeled and the preferences that exist on these at-
tributes have not been represented. These preferences, corresponding to aspects of design
performance that are not explicitly modeled as performance variables, are represented as

preferences on the design variabdgs..., d,,.

Definition 2.6 The design preferencéunction 1.4, (d;) represents the preference that the
designer has for values of the design variafjldbased on aspects of design performance

that are not already represented by performance variables:

wa; (d;) : X; — [0,1] C R. A

Because the customer has no direct basis for preferences among values of a design vari-
abled;, the designer must decide how valuesipinfluence unquantified aspects of design
performance which are not represented by performance variables. Specifying a design pref-

erencey,, relies on the designer’s experience and judgement in three ways:

1. to determine which unquantified aspects of performance to consider and their relative

importance,

2. to estimate how values of the design variatbleaffect each unquantified aspect of

performance considered, and
3. to anticipate the customer’s preferences on these unquantified aspects of performance.

In specifying a preference function on the design variabkr axle length the designer
might consider that vehicle cornering, suspension geometry constraints, and manufactura-

bility are the most important unquantified aspects of performance. Additionally, experience
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may lead the designer to define minimum and maximum lengths based on previously suc-
cessful and unsuccessful vehicle drivetrain designs. These issues, which guide the specifi-
cation of design preference, will be referred todesign considerationsBecause vehicle
cornering, suspension geometry, manufacturability, and the experience gained from pre-
vious vehicle drivetrain designs will not be explicitly quantified, design preferences are
the only means of including these important aspects of design performance. Design prefer-
ences represent preferences on relevant aspects of design performance that are not explicitly

guantified and hence would otherwise be omitted.

2.3 Aggregating Preferences

In order to evaluate designd%e DVS, the various individual preferences must be combined

or aggregated to give a single, overall measure.

—

Definition 2.7 Theoverall preference:,(d) combines the preferences of the designer and
customer for a particular desigﬁand is a function of the design preferenges(d;), and

-

the functional requirements,. (p;) = pp; (fj(d)):

pold) = P (11, (1), o 1, () iy (F1())s s, (fol D)) ) - A

The aggregation functiorP reflects the trade-off strategy, which indicates how competing

attributes of the design should be traded-off against each other [44, 45].

An airplane can be made lighter, but this action will probably increase man-
ufacturing cost. One of the most difficult aspects of product development is
recognizing, understanding, and managing such trade-offs in a way that maxi-

mizes the success of the product. [60] (p5)

The trade-off strategy formalizes the designer’'s balancing of conflicting goals and con-
straints. The overall preference embodies the preferences that the designer expresses on

design variables as well as the preferences that the customer expresses on the performance
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—

variables. Overall preference may be expressed on the PY3), or on the PVSy,(p):
o (p) will be defined in Section 3.1. The set of design configurations that maximize
denotedX*. Such peak preference desigﬁs X* are “most preferred” with respect to the

design and performance variables modeled:

—

vd e X*  po(d) = pf = sup{u,(d) | d € DVS}.

. is the peak overall preference in both the DVS and the PVS [47]. The set of performances
that correspond to the set of peak preference destgnis denotedy* = f (X*).
The following five axioms have been suggested as necessary conditions in or@er for

to reflect how a designer might rationally trade-off preferences [43]{setp + q):
Axiom 2.8 Commutativity:

P(Hl? cees Mgy eeey ks 7“]\7) = P(,“*l? cees Bk ey gy 7“]\7) VJ, k.

A basic condition is that the overall preference should not depend on the order of the pref-

erences being combined.

Axiom 2.9 Monotonicity:

P(Mlv-'-aukv-'-auN) Slp(lula'“v:uzv“'mu]\f) for 273 SM; Vk.

As any single preference increases or decreases, the overall preference should either move
in the same direction, or not at all. An aggregation function that does not satisfy mono-
tonicity would allow a design with the same preferences as a second design but with a
lower preference on one particular variable, to have a higher overall preference. If two bi-
cycle designs differ only in that one is lighter (hence higher preference on the performance

variableweigh), then only an irrational trade-off strategy would prefer the heavier design.
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Axiom 2.10 Continuity:

P(p1y oo figgy -y piy) = lim Py ooy oy oy i) Yk
My — Kk

Two designs with the same preferences on all variables except one, for which the prefer-
ences differ infinitesimally, should have similar overall preferences. An aggregation func-
tion should not create discontinuities in the overall preference where there are no disconti-

nuities in the preferences that are being aggregated.

Axiom 2.11 Idempotency:

If all aspects of a design are equally satisfactory and have the same preferethemn
the overall preference should also peA non-idempotent aggregation function would be
either optimistic or pessimistic in aggregating preferences and would introduce an artificial

bias.

Axiom 2.12 Annihilation:

P(Nl, ceey 0, ...,MN) =0.

A preference of is defined as representing complete dissatifaction: the variable value spec-
ified is unacceptable. Unacceptability implies that the design has failed to meet a minimum
requirement. If any aspect of a design is in this way unacceptable, the entire design must be
unacceptable. If, for example, an electric vehicle design has unacceptably high structural
stresses, no enhancement in cost, vehicle performance, range, or styling can compensate.
These design axioms do not define rational decision-making in general, but merely
indicate necessary conditions for aggregation functions within a fuzzy model of engineering
design such that these functions appropriately reflect how designers rationally aggregate
preferences. Fung and Fu [18] define a similar set of axioms for rational decision-making

in general: commutativity, monotonicity, continuity, idempotency, and associativity. With
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the exception of associativity, which is included in the definition of hierarchical aggregation
functions in Section 2.6, these axioms are a subset of the five design axioms. It is apparent
that the annihilation axiom is particular to design. Yet it is a corollary to the definition

of zero preference as failure to meet a minimum requirement. The annihilation axiom is
necessary to ensure that every acceptable design meets all minimum requirements.

Aggregation functions that satisfy the five design axioms shall be ted®gidn-appropriate
A variety of design-appropriate aggregation functions exist. The choice of aggregation
function is, however, not one that the designer is free to make: the appropriate trade-off
strategy is usually dictated by the design problem. Although it is the designer who balances
the different attributes of the design, it is the relationship between attributes, a property of
the design problem itself, that determines how they should be traded-off.

Consider a system of components, where the failure of one component results in the
failure of the system such that the entire assembly must be replaced. A high preference
corresponding to a long time to failure for one component cannot compensate for a low
preference corresponding to a short time to failure for another component. Only the lowest
preference should be considered in evaluating the design: higher preferences for other at-
tributes of the design cannot compensate for a lower preference. Thisis@ompensating

trade-off strategy for which the aggregation function is the mininfey,:

(21) MO(CZ) = min (:udp'-'v;udnv:uplv“'nupq) :

This is Bellman and Zadeh's [6] hard “and” operation for fuzzy sets, which does not allow
attributes to be traded-off against each other. Yager [70] notes that this choice of aggrega-
tion function leads to the classic max-min solution from game theory.

Alternatively, consider an ordinary household battery, and in particular the performance
variables battery life (energy stored) and unit cost. A different relationship exists between
these two variables. Low unit cost can partially compensate for short battery life and long
battery life can partially compensate for high unit cost. Name brand alkaline batteries are
examples of long life, high cost designs. Generic batteries are examples of low cost, short

battery life designs. The two attributes unit cost and battery life can be traded-off against
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each other, so that a more acceptable attribute partially compensates for a less acceptable
attribute. This can be modeled adudly compensatingrade-off strategy for which the

aggregation function is the geometric weighted mean or product of pd#ers

1
n+q

n q
(2.2) po(d) = | ] wa, T 1,
=1 =1

This is Bellman and Zadeh's [6] soft “and” operation for fuzzy sets, which corresponds to
the Nash solution from game theory [70].

The aggregation function®,,;, and P, which correspond to non-compensating and
fully compensating trade-off strategies, are two limiting cases in a family of design-appropriate
aggregation functions identified by Scott and Antonsson [54]. This class of functions will

be introduced in Section 2.5.

2.4 Weights

The relative importance of different attributes of the design must be considered in combin-
ing their corresponding preferences. This is achieved by assigning indiwiceightsto

each variable:

wg; >0

Wp; = 0.

Each weightv quantifies the importance of its associated variatlitiveto other variables.

It has been proposed that importance is a function of design and performance vari-
ables [43]. Consider, for example, one link of a multi-link vehicle suspension system. The
longitudinal stress in this component becomes an important, indeed critical, variable as it
approaches the yield stress of the material. Yet ordinarily the stress in this particular com-
ponent would not be considered especially important. This suggests that the corresponding
importance weighting should vary with the stress in order to correctly represent the change
in perceived importance. But this is not necessary within the method of imprecision because

specifying a preference of zero or close to zero ensures that the stress in this component
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becomes the critical attribute, because of the axioms of annihilation and continuity. The
variation of importance with a variable’s value reflects the shifting criticality of variables
relative to each other. This shift in criticality is already modeled by preference functions
on design and performance variables. Weights need only model the relative importance of
variables within the context of the design problem, without reference to specific de%igns
or performanceg.

In order to account for relative importance, aggregation functions must now aggregate
preference and weighte., (1, w) pairs. Note that preferences are functions of the variables
they represent, but weights are constants. The axioms for design-appropriateness must be

redefined to include weights:

Axiom 2.13 Commutativity:

P((Mlawl)v ey (:ujij)v ey (Mkawk)v ey (MNawN)) -

P((,U'luwl)u ceey (Hlﬁwk‘)u ceey (H]7wj)7 ceey (HNawN)) VJ, k.

Axiom 2.14 Monotonicity:

P((thl)?’"a (:U’k‘awk?)w“v (MN?WN)) S P((Ml,&)l),..., (M?{’wk)7"’7 (MN?WN))
for u, < p),  Vk

P((Mlvwl)v'“v (/J/kawk)v'“v (/J/vaN)) < P((ulvwl)v'“v (/J/kvw,;g)v'“v (/.LN,WN))
for wy, < w, wherep; <, Vj #k  Vk.

Increasing the importance of the most preferred attribute should not decrease the overall

preference.
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Axiom 2.15 Continuity:

P((,U'luwl)u ceey (Hlﬁwk‘)u ceey (HNawN)) -
Hm P((p1,w1), oo, (fhy Wi)s s (N, wN)) - VE
My — Mk

P((n1,w1), -, (e, W), -y (B, wN)) =

lim P((pa1,w1), ey (ks W), ooy (v, W) Yk
W, — Wi,

Aggregation functions should be continuous in preferences and in weights.

Axiom 2.16 Idempotency:

P, w1), ., (1, wn))

.

Axiom 2.17 Annihilation:

P((p1,w1); 5 (0,wg), s (v, wn)) =0 wherew, 0 Vk
P((ulﬂwl)v ED) (:ukv 0)7 ey (,UN,WN)) -

P((p1,w1), ey (=1, Wr—1) (M1 Wt 1) -y (N, wN))  VE.

A weight of 0 is defined as removing the attribute from consideration.
Weights have been defined without an upper bound on their value and without the neces-

sity for normalization. Thus an additional axiom is required to correctly aggregate weights.

Axiom 2.18 Self-normalization:

P((Hl) )‘wl)a X (NN: AWN)) = P((:U‘hwl)a X (HN?WN)) whereA > 0.

Self-normalization allows groups of weights to be freely scaled by any strictly positive
constant\. This is a necessary property for hierarchical aggregation, which is discussed

in Section 2.6. Design-appropriate weighted aggregation functions must satisfy Axioms
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2.13-2.18. Note that non-weighted aggregation functions are a special case of weighted

aggregation functions with uniform weights.

2.5 Weighted Means

This section discusses the class of functions known as the (quasilinear) weighted means [1]:

wig () + .. + ngl(MN)>

(2.3) P((p1,w1), -, (N, wN)) = g < wi+ ... +wn

whereg is a strictly monotonic, continuous generating function with invers& ¢(0) <

W1y iy < g(1); wi,...,wny > 0; @andwy + ... +wy > 0. Scott and Antonsson [54] show

that the properties of the weighted mean include all the properties of design-appropriate
weighted aggregation functions except for annihiliation (Axiom 2.17). Thus any weighted
mean that satisfies annihilation is design-appropriate. Properties of the weighted mean that
are sufficient to define the form of Equation (2.3) can be derived from the remaining design
axioms (2.13-2.16, and 2.18) with the additional assumption of strict monotonicity [54].
Hence any strictly monotonic design-appropriate aggregation function must be a weighted
mean.

The weighted root-mean-power family of functions is generated by the fungtion—=
w* [1]:

1
wluls + ...+ WNHNS> s

(24) Ps((ul,wl),...,(HprN)) = < w1+ ... +wn

where the parametere R andg(0) = 0 < py, ..., un < g(1) = 1. Weighted root-mean-
power functions that satisfy annihilation are design-appropriate. A weighted mean satisfies
annihilation if and only iflim,, .o g~! () is unbounded [54]lim,, ¢ M% is unbounded for

s < 0 only. HenceP; wheres < 0 is a class of design-appropriate aggregation functions.

Consider the limiting cases 6f= 0 ands = —c0. Ps—¢ is the product of power®



in its weighted form [54]:

€=

N

(2.5)  Ps—o((p1,w1), ., (v, wn)) = <H Mkw’“> wherew = w; + ... + wy.
k=1

Ps——oo IS Pmin Without weights [54]:

(2.6) Ps=—oco((p11,w1); s (N, wN)) = min (1, ..., un) -

Ps<o interpolates between the non-compensating and fully compensating trade-off. The
degree of compensation increases awcreases from-oco. Intermediate trade-offs corre-
sponding to intermediate values ©@ghall be termegbartially compensatingThe class of
functionsP,<( is not unique in interpolating betweé?,;, andPr;: there exist other gen-
erating functions that give rise to design-appropriate aggregation functions that trade-off
preferences differently [54].

ThatP.,in andPr define the limits of the family of design-appropriate functiohs:o
suggests that the non-compensating and fully compensating strategies represent extremes
in design-appropriate trade-offs. Indeed, Yager [70] suggests that “these forms may repre-
sent in the oriental sense the Yin and the Yang.” Idempotency and monotonicity ensure
that no design-appropriate aggregation function can generate values le$%.thdor any
set of input preferences. Thi#,;, defines a lower bound for design-appropriate functions
in general [54]. Idempotency and monotonicity also ensure that the maximum is an upper
bound for design-appropriate aggregation functions. The maximum, however, fails to sat-
isfy annihilation and is not design-appropriate. Moreover, a funatiar’ defined as equal
to max except where annihilation requiresax’ = 0, would fail to satisfy continuity where
the function transitions [54]. Thus a maximal design-appropriate aggregation function
Pmax’ Would be as close as possiblertax’ while maintaining continuity near, = 0. Pr
does not define an upper bound for design-appropriate aggregation functions, even though
it defines the upper bound of a particular class of design-appropriate aggregation functions.

The class of function®,-( do not satisfy annihilation, but are compatible with the

remaining design axioms. Therefore, a class of design-appropriate aggregation functions
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could be loosely defined in a similar manner as the maximal design-appropriate aggregation

function described above:

Psso if p1,.oyuny =6
2.7  Peo((p1,w1), -, (pn,wn)) =4 0 if g =0,wr, #0,1 <k <N

Ps otherwise

where0 < § <« 1 andP;s continuously interpolates betweé@.o = 0 at ux = 0 and
Psso = Psso at up = 6. In practice, it is not necessary to defii@r Ps except that
is distinguishably greater than but is less than the lowest distinguishably greater than
preference specified €., § is small but not infinitesimal). The discretization of preferences
that obviates a precise definition Bf~.( is discussed in Section 5.1.

Py~ interpolates betweeRy;, the fully compensating trade-off, affd), ../, the maxi-
mal design-appropriate aggregation function. sAscreases te-oco the degree of compen-
sation increases such that smaller increases in a higher preference compensate for larger
decreases in a lower preference. This willingness to trade a small gain for a large loss im-
plies thatP,~ is a family of supercompensatingggregation functions. At the extreme,
Pmax judges a design by its best attribute, except where another attribute is close to unac-
ceptable (i < §). This may not be irrational, but it is difficult to envision a design problem
for which P,,..» would be an appropriate trade-off strategy.

The parametes is unwieldy and not readily interpreted. A parametean be suitably

defined to represent the degree of compensation on the infereal

S
2 14— wh
(2.8) c +k+\s\ wherek > 0
such that
2.9) s(c) = k% 5(0) = —o0, s(1) = 0, ands(2) = +o0.
—

The constank should be set to some positive value such that intermediate valuaepf
resent appropriate degrees of compensation. A suitable valuetas not, as yet, been

determined. It is future research. The value fsshould be determined in conjuction with
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non-compensating Prin § = —00 c=
partially compensating Ps<p | —c0o<s<0|0<ec<1
fully compensating Pr; s=0 c=1
supercompensatingPs~y | 0<s<oo | 1<c<?2
maximally compensating P,/ § =00 c=2

Table 2.1 Design-appropriate aggregation functions based on the weighted
means, parameterized smandc.

a, perhaps informal, definition of what the degree of compensatiepresents. Currently
only three values are pinned dowa:= 0 is hon-compensating; = 1 is fully compen-
sating, and: = 2 is maximally (super-) compensating. A family of design-appropriate
aggregation functions may be defined by combiriiig, andP;-(/, and reparameterizing
inc:

Po<os =k(1—1) ifo<c<1

(2.10)  P.((p1,w1), o (i, wn)) = :
Poso s = k(g —1) ifl<e<?

Table 2.1 summarizes the continuum of aggregation functions defingy.by

2.6 Hierarchical Weighted Design

Within a single design problem, different groups of attributes may require different trade-
off strategies. In the design of a consumer product, for example, certain variables related
to safety might require a non-compensating trade-off, while other variables related to con-
venience or portability would require a compensating trade-off. In general, preferences
for individual attributes will need to be successively aggregated by a hierarchy of different
trade-off strategies. Each aggregation operation must aggregate not only preferences but
also weights, such that aggregating the (preference, weight) pairs corresponding to indi-
vidual attributes results in an aggregated (preference, weight) pair. A hat will be used to

denote (preference, weight) paifs= (i, w). Aggregation operations that aggregate both
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preference and weights will also be denoted by a hat:

(2.11) Pitrycors i) = (PP (s ooy i )s P2 (@1, e 0))-

Suppose that th& = n + ¢ design and performance variables are split into two subsets

so that a different trade-off strategy can be applied to each:

flo = (thoswo)

= P, .--iN)

(2.12) = P (731(/11, coos fi)s Prr(fies 1, ---,ﬂN)> .

This is a hierarchical form of Definition 2.7. How should the subordinate aggregation
operations’ﬁl andP;; and the superordinate aggregation operaﬁ})m[ be defined? If
a particular trade-offP. (Equation (2.10)) with an appropriate degree of compensation
is used to aggregate preferences foriélvariables, therP!, P}, andP},, must satisfy
Equation (2.12) forP* = P,. Yet this condition does not uniquely speciBf’, P/, and
PY, ;. nor does it indicate how weights should be aggregated.

The form of the weighted mean (Equation (2.3)) suggests that aggregated weights

should be added if a weighted mean is used to aggregate preferences:
Pw(wl, ...,wN) =w1+..+wnN.

This definition of P is consistent with Equation (2.12) ®*, PY, P}, andP/,,, are all

defined to be the same weighted mean:

P¥ (Pw(wlv ...,Wk),Pw(warl, "'7WN)) = wa (wl + ...+ Wy Wk+1 + ...+ WN)
= wt..twptwppr+...+wN

(2.13) = PY(w1 4 .. +wp)
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P (73(1117 ooy )y P (figet 1 -'-a/lN)) = P! ((pr,wr), (11, wrr))

_ <w191(m)+wngl(un)>
=g
wr + wyg

1 1
(W1 + oo +wp)g™? (g (wlg (“ifiiiiiﬁig (“’“)» +wrrg™ (prr)

w1+ .. + W +wir

=g

_, <UJ191(M1) + o+ wpg (k) + wrr19 (1) + o+ UJNgl(ﬂN))
w1+t ...twg +twggr +... twn

(214) =P (/3’17 mllN)

Thus the use of an aggregation operat{@, P¥), whereP* is a weighted mean and
P« is the arithmetic sum, has been shown to be hierarchically consistentP Ttanily

of weighted means generated byu) = u° therefore defines hierarchically consistent
aggregation operations, as do tAg-( subset of design-appropriate aggregation functions.
The specially define®,~.y (or P.~1) family of design-appropriate aggregation functions
must be separately shown to be hierarchically consistent whgrg differs from P,~,

i.e,, where there exists a prefereneg < 4.

Wherep;, = 0 for somek, annihilation requires that the aggregated preference be zero
and that this zero preference be propagated up the hierarchy. This is clearly satisfied since
P, is defined to annihilate such th& ((11,w1), ..., (un,wn)) = 0 if pp = 0 for
somek (Equation (2.7)). Hierarchical consistency need not be shown for the intermediate
case wherd < i < § for somek because such intermediate values of preference do
not occur in practice, as is discussed in Section 5.1. 'I’I?wdefined asgP.,Pv), i.e,
(Ps<0,P*) and(Ps>o, P¥), has been shown to be a valid hierarchical weighted aggrega-
tion operation for (preference, weight) pairs.

The hierarchical aggregation operati@@ can be successively applied, allowing mul-
tiple levels of problem decomposition or aggregation. Self-normalization (Axiom 2.18)
allows weights to be specified at arbitrary levels of aggregation and freely scaled. A set of
variables representing a single design problem can be decomposed into successively smaller
sub-problems based on the structure of the problem and the nature of the trade-offs between
variables. Importance weightings for each elemental attribute at the lowest level of the hi-

erarchy can be specified either relative to all other elemental attributes globally or relative
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Figure 2.2 Amerigon’s electric vehicle chassi®Copyright 1996 CALSTART,
Inc., all rights reserved. Permission to use granted April 30, 1996.

to attributes within each sub-problem locally. Where weights are specified locally by sub-
problem, the aggregated weight representing the importance of the sub-problem must be
scaled relative to other sub-problems at the same level of aggregation. This is equivalent to
aggregating multiple design problems into a single super-problem: the importance of each
problem must be determined relative to the other problems at the same hierarchical level,
prior to aggregation. Weights need not be bounded by any specific limit, though it may
be convenient to normalize weights within a particular problem to suim $ach that they
represent the importance of each attribute in the context of the problem as well as relative

to each other.
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Figure 2.3 Design preference aggregation hierarchy for an electric vehicle de-
sign.
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2.7 Example: Design of an Electric Vehicle

This section demonstrates the modeling of a hierarchical design problem through an ex-
ample: the design of an electric vehicle (EV) based on a space frame. It is assumed that
the basic geometry of the frame has already been decided and that the design team is cur-
rently concerned with basic frame parameters and important choices in vehicle components
such as the propulsion system. Figure 2.2 shows a running chassis for an electric vehicle
developed by Amerigon Incorporated under the CALSTART business incubator program.
This actual working vehicle design is the basis for the example presented here, though the
vehicle used for the example is not intended to accurately represent Amerigon’s running
chassis. The purpose of the running chassis is to provide “a modular ‘common platform,’
or shared chassis, that can serve as the basis for a family of electric vehicle models for sev-
eral manufacturers. The running chassis is a fully functional EV without body or interior,
utilizing an aluminum space frame design for lighter weight and lower cost. [23]"

The hierarchical aggregation of individual design preferences is shown in Figure 2.3.
Individual design preferences,, (di), ..., pa, (dy,) are aggregated through a hierarchy of
weighted aggregation functions into the combined design preferer(ce (ud(cf) will be
formally defined in Chapter 3). The A pillars are on either side of the front windscreen, and
the B pillars separate the front and rear doors (Figure 2.2). The hierarchy for the frame of

the vehicle is incomplete: only the design variables for the B pillar are given. These design
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variables are shown in Figure 2.4. Note thatv, tyep, andtquer do not fully describe the
cross-section. Other variables that are not under active considerat@grt{ose indicated
but not labelled) do not need to be modelled as design variables.

Recall that design preferencgg(d;) represent the customer’s anticipated preferences
with respect to design considerations: the unquantified aspects of design performance
which are not represented by performance variables. Thus the first step is to determine
which aspects of performance are to be quantified as performance variables. For this exam-

ple the following performance variables are to be calculated:

e p; vehicle range

p2 Vehicle cost

ps acceleration time from 0—60 mph

p4 Vehicle weight

ps frame stiffness in bending
e pg frame stiffness in torsion

It is assumed that estimates for these quantities are available for any given design config-
uration. Rangep; can be calculated given data on energy stored, motor and transmission
efficiency, aerodynamic drag, and rolling resistan@ost p, andweightp, and can be
calculated using a spreadsheet or similar software, given the necessary weight and cost
data. 0—60 timeps can be estimated from motor and transmission characteridBesd-

ing stiffnessps and torsional stiffnesgpg can be evaluated using a finite element model
(Section 4.2).

The design considerations that pertain to each design variable are indicated in Fig-
ure 2.3. The careful distinction between performance considerations (represented by func-
tional requirements on performance variables) and design considerations (represented by
design preferences on design variables) is an important contribution of this thesis. De-
sign considerations explicitly account for relevant aspects of design performance that are

otherwise not accounted for as performance considerations. Issues such as aesthetics and
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manufacturability are clearly relevant to design evaluations, yet they are not easily quanti-
fied. Design preferences embody these issues. In constructing the hierarchy to aggregate
design preference, it is important to understand which specific issues are being aggregated
at each step.

Although the B pillar design variablgsandw affect stiffness, cost, weight, range, and
acceleration, these considerations will ultimately be explicitly evaluated. They do not need
to be represented by design preference. The design considerations that remain are aesthetics
and packaging. B pillars that are too wide or too narrow are not attractive. B pillars that
are too deep reduce clearance inside the vehicle, yet a certain minimum depth and width
is required to attach the seat belt. Additionally, wide B pillars reduce the size of the door
opening. The thicknessegep andtoyter affect the difficulty of extruding the cross-section.

The internal web is necessary to maintain the shape of the cross-section when it is bent,
although a thick web is difficult to manufacture [11]. The valueg,@f, andtqyer affect the
difficulty of extruding a uniform cross-section within tolerance [11]. Joints and attachments
to the B pillar lead to a minimum value fégyter.

The design considerations associated with the B pillar design variables are not natu-
rally compensating. Packaging constraints and aesthetics cannot significantly compensate
for manufacturability. Yet the trade-off is not purely non-compensating. Thus the level of
compensation specifiedis= 0.2. The value of: obtained in this manner is, at best, an esti-
mate. Indeed, the exact parameterizatioﬁisg)has not yet been determined. Nevertheless,
the valuec = 0.2 approximately represents the informally defined degree of compensa-
tion that is appropriate for the aggregation of the design considerations associated with the
B pillar design variables. More precise methods of determiringll be introduced in
Section 5.2.

For each aggregation operation at a particular hierarchical level in Figure 2.3, the lo-
cally normalized weights assigned to the aggregated branches are indicated. Global weights
normalized for the entire design problem are printed in italics below each design variable.
The global weights were obtained by multiplying the local weights along the branches con-
necting each design variable to the top of the hierarchy. Because it is natural to compare

the relative importance of closely related attributes, local weights were specified first. The
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global weights corresponding to the local weights specified were then examined and adjust-
ments were made to both global and local weights in order to better represent the perceived
relative importance of the design variables.

The types of energy storage considered are limited to conventional nickel-cadmium and
lead-acid batteries, and an advanced lead-acid battery that uses a lead wire grid extruded
onto afiberglass core. The lead wire-acid battery, developed by Electrosource Incorporated,
of Austin, Texas, has advantages in weight and durability and with an estimated price of
$3,000 per vehicle it is among the least expensive new energy storage options available for
electric vehicles [42]. However, there is a degree of risk involved in using a new battery
technology that is as yet not in widespread usage. A more important design consideration is
the time required to recharge the batteries. Conventional nickel-cadmium batteries can be
partially recharged relatively quickly in comparison to conventional lead-acid batteries. The
Peugeot 106 and Citem'AX, both produced by PSA Peugeot Cémuse nickel-cadmium
batteries that can be fast-charged in 10 minutes to extend the vehicle’s range by 20 to 30
kilometers [42].

The total energy stored?, is essentially the number of batteries. As the number of
batteries becomes large, the quantity of potentially dangerous acid in a lead-acid battery,
for example, becomes a significant safety concern. Battery mass also affects safety in
a collision. Additionally, there is an upper limit to the number of batteries that can be
physically packed into an electric vehicle, independent of their weight.

A crucial component of a practical electric vehicle is an energy management system.
The total energy stored in an electric vehicle is limited: range is dependent on how effi-
ciently that energy is used. Where lead-acid batteries are the only means of energy storage,
the maximum power that can be drawn from the batteries is also a critical limitation. An
especially important choice is whether or not to use regenerative braking in order to re-
cover some of the energy otherwise dissipated in decelerating the vehicle. Assuming that
weight, range, and cost are already accounted for as performance variables, the remaining
considerations are the additional complexity of such a system, and in particular its impact
on reliability.

The design considerations governing the choice of motor used to propel the vehicle are
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the availability of types and sizes of motor and packaging constraints that limit the over-
all dimensions of the motor. These are relatively unimportant issues as is indicated by a
global importance 06.04. Note that this does not imply that the choice of motor is a rela-
tively unimportant decision, nor that the motor is a relatively unimportant component in the
vehicle, but merely that availability and packaging constraints for the motor are relatively
unimportant compared to other design considerations.

Ironically, the efficiency of an electric vehicle creates a problem that does not exist for
combustion-powered vehicles: how to heat the interior when there is no convenient (and
free) source of waste heat. The problem is exacerbated by limited energy storage. Thus the
passenger heating and cooling system in an electric vehicle is a significant and integral part
of the design. The selection of the capacity of the climate control system directly impacts
range, cost, and comfort. Of these, comfort is not modeled as a performance variable. Its
direct importance to the customer is reflected in a global weight2is The correspond-
ing design preferencpeak capacitylS more heavily weightedpeax capacity= 0.2) than any
other individual design preference: the design consideratmonfortassociated witfpeak
capacityis the most important of the design considerations in Figure 2.3.

Critical aspects of design performance are typically quantified. Thus they are mod-
eled as performance variables and the customer’s preferences on them are represented as
functional requirements. Therefore, the remaining aspects of design performance that must
be expressed as design preferences on design variables are typically of lesser importance.
Many design considerations,g, manufacturability, are only of indirect interest to the cus-
tomer. Thus the extent to which the determination of the design preference hierarchy, the
relative weights, and the aggregation functions is informal and approximate, is entirely
appropriate. The degree of compensatidar each aggregation operation need only be de-
termined to the nearest 0.1, at most: for many problems the nearest 0.2 will suffice. Perhaps
a more valuable result of constructing the design preference hierarchy is the understanding
gained through identifying design considerations, their relative importance, and their as-
sociated design variables, and formalizing the hierarchical relationships between design
considerations. A similar benefit can be expected from constructing the functional require-

ment hierarchy. The functional requirement hierarchy is more easily constructed because
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performance considerations are relatively specific and well-defined. It has been demon-
strated that the construction of these models is not only feasible and informative, but in
necessitating the careful identification of the specific considerations corresponding to each
variable and their relative importance, the process of constructing the model is itself helpful

in understanding the structure of preferences that characterizes the design problem.

2.8 Related Work

Decision-making methods that address uncertainty, in a broad sense, are not new. The
method of imprecision presented in this thesis may be distinguished from these other meth-

ods in three principal directions:
¢ the type of uncertainty modeled,
¢ the means by which uncertainty is modeled,

¢ the functions used to aggregate uncertainty.

Probability

Probability theory quantifies uncertainty due to random variation. Probability methods fo-
cus on observing a process in order to characterize its behavior and hence predict the like-
lihood of various outcomes. Probabilistic uncertainty arises from a stochastic process for
which the best predictor of the final outcome is statistical analysis of previous behavior.
This is in contrast to imprecision in design, which arises because the designer has yet to
make decisions that will more precisely determine the design. This decision-making pro-
cess is clearly not random and analysis of previous behavior is of limited value. Thus prob-
ability methods are not well-suited to modeling design imprecision. Probability methods
are, however, well-suited to dealing with stochastic uncertainty in manufacturing processes,
material properties, loading, reliabilitgtc. Probabilistic design [22, 56] seeks to support
design decisions through the analysis of these stochastic variations.

Taguchi’'s method [7, 50, 57], which is widely used in industry, views manufacturing

variations as undesirable stochastic noise. The method has three key aspects [50]:
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1. The loss in producing a product that deviates from target values is assumed to be

guadratic.

2. Selected experiment design techniques are used to efficiently characterize the behav-

ior of the manufacturing process relative to controlled inputs.

3. The goal is to achieve robustness both in terms of the insensitivity of product per-
formance to uncontrolled variation as well as the consistency of the manufacturing

process in delivering products to specification.

Taguchi’s method is a philosophy to understand and minimize the cost of stochastic process
variations and, as such, has been shown to be effective. Design imprecision, however, is

not explicitly modeled in the Taguchi approach.

Utility Theory

Utility theory seeks to aid decision-making in the presence of uncertainty. The type of
uncertainty modeled is uncertainty due to decisions yet to be madénprecision. Utility

theory is based on economics and its central assumption is that each aspect of a decision
can be assigned a function representing utility. Although utility is similar to preference as
used in the method of imprecision (von Neumann and Morgenstern [61] use “satisfaction”

and “preference” as similes for utility), there are three important differences:

1. Utility functions are specified only on objectives: where there are multiple courses
of action, for example, the expected utility of each action is assessed on each ob-
jective variable [25]. The method of imprecision admits a second possibility: that
preferences may also be specified on design variables, based on anticipated design
performance. Proxy attributes in utility theory [25] are equivalent to performance
variables and not design variables because they still relate directly to objectives, and
most significantly the mapping from proxy attributes to objectives is not explicitly

evaluated.

2. Utility is based on a common monetary commaodity:
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We shall therefore assume that the aim of all participants in the economic
system, consumers as well as entrepreneurs, is money, or equivalently
a single monetary commodity. This is supposedly to be unrestrictedly

divisible and substitutable, freely transferable and identical, even in the

guantitative sense, with whatever “satisfaction” or “utility” is desired by

each participant. [61] (p8)

While this is reasonable in the context of economic systems, it is not especially suited
to design. Preferences on design attributes are not necessarily identical and substi-
tutable commodities. Preferences on the stresses in various components of an au-
tomobile suspension system are not identical to preferences on various measures of
musical fidelity in the sound system. The issue is not difference in importance, but
difference in character: different types of attributes require different trade-offs. A
uniform monetary commaodity is always traded as a commodity. Moreover, every

objective is assumed to have a price.

. A consequence of the equivalence between utility and a monetary commodity is that

utility is relative:

. utility is a number up to a linear transformation.
We do not undertake to fix an absolute zero and an absolute unit of util-
ity. [61] (p25)

Preference is absolute: a preference of zero is defined as unacceptable and a prefer-
ence of one is defined as ideal. The absolute definition of zero preference is essential
to design. The annihilation axiom for rational design decision-making relies on the
absolute definition of zero preference. Failure to meet a minimum requirement in
one aspect of the design must render the entire design unacceptable. Because there
is no absolute zero of utility, there is no notion of absolute unacceptability in utility
theory: a sufficiently high utility in another attribute can always compensate. This

does not realistically represent design decisions.
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Utilities are commonly aggregated with the arithmetic mean, which is a function in the

family of weighted means:

N
1
(2.15) Ps—1((p1,w1), oo, (UN,wN)) = NZ;MM

As discussed in Section 2.5, functio®s~o do not satisfy annihilation and hence are not
design-appropriate. In general, aggregation functions in utility theory are not required to
satisfy annihilation because utility is relative and zero utility does not represent any absolute

notion of null preference or unacceptability.

Matrix Methods

Design imprecision during the earliest stages of the design process is manifested as a multi-
plicity of alternative concepts. Morphological matrices [48] classify concepts by function,
solution variant, working principle, type of motioatc, and in doing so, facilitate the gen-
eration of new concepts. Concepts are typically not sufficiently refined for quantitative
analysis. Concept selection matrices [3, 48, 52] rank alternatives against evaluation crite-
ria. Rankings are typically informally estimated against an existing design or some other
datum. The weighted sum of rankings identifies promising alternatives. Pugh [52] also
describes an alternative preliminary ranking scheme that has only three ratirigéet-

ter than datum), =" (worse than datum), and “S” (same as datum). These ratings are not
summed algebraically, as in other methods, but rather serve to indicate the strengths and
weaknesses of each alternative. It is in this respect that concept selection charts are most
effective. They are not intended to be formal analyses. The summation of numeric rankings
does not accurately reflect how criteria should be aggregated.

The analytic hierarchy process, or AHP [53], is a systematic procedure for determining
the relationships between elements in a hierarchy of progressively more specific aspects
of a problem. The axioms of the AHP do not include strong assumptions of rationality in
decision-making [53]. The AHP combines attributes using a weighted sum which does not

satisfy annihilation.
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Optimization

Optimization does not expressly model uncertainty. The purpose of design optimization
is to algorithmically search for the “best” design relative to a single overall criterion. Pa-

palambros and Wilde [49] identify four steps in the design optimization approach:
1. The selection of a set of variables to describe the design alternatives.

2. The selection of an objective (criterion), expressed in terms of the design variables,

which we seek to minimize or maximize.

3. The determination of a set of constraints, expressed in terms of design variables,

which must be satisfied by any acceptable design.

4. The determination of a set of values for the design variables, which minimize (or

maximize) the objective, while satisfying all constraints.

In practice, steps 2 and 4 pose the greatest difficulty. It is not always possible to represent
all relevant design requirements in a single objective. “The importance of optimization lies
not in trying to find out all about a system, but in finding out, with the least possible effort,
the best way to adjust the system. [2]” Ultimately, optimization does not seek to explore the
design problem, but is interested only in obtaining the single “best” solution. This directed,
point-based approach leads to algorithmic efficiency but is subject to two of French’s three

criticisms:

e Are the algorithms and the criterion used to optimize the design an acceptable and

rational emulation of the decision-maker?

¢ Is the process of design optimization itself informative, and does it guide the evolu-

tion of the decision-maker’s beliefs and preferences?

Engineers at one major U.S. automobile manufacturer tend to view optimization as a black
box design tool [12]. Given constraints and a set of design variables, the optimization
software simply searches for the design that is (locally) optimal with respect to a given
objective, e.g, weight or stiffness. The software does not facilitate understanding of the

design space other than at the single optimal design point. Moreover, the real problem has
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multiple objectives. Thus, optimization proceeds by iteratively cycling through several ob-
jectives. Occasionally engineers are tempted to “tweak” the final design in order to trade-off
one objective for another, but this leads to designs that are non-optimal in some unexpected
direction [12]. The problems of local optima, multiple objectives, and to a lesser extent
lack of participation in the optimization process have been addressed in more advanced op-
timization methods, notably genetic algorithms [20] and various multi-objective optimiza-
tion formulations [5, 19, 58]. Dlesk and Liebman [14] describe a multi-objective design
methodology that also allows for uncertainty via “hedging,” a more systematic alternative
to tweaking, and sensitivity analysis about the design point.

Optimization is fundamentally a point-based approach. Moreover, it emphasizes objec-
tives as opposed to preferences on objectives, and thus implicitly assumes that preference
is a simple, often monotonic function on each objective. Additionally, constraints are typ-
ically assumed to be precise. Yet these assumptions allow optimization algorithms to be

computationally efficient and readily implemented.

Set-based Methods

Wardet al.[62, 63], in aremarkable case study of Toyota's design and development process,

characterize a new approach that they refer to as “set-based concurrent engineering.”

Toyota designers think abouts sets of design alternatives, rather than pursuing
one alternative iteratively. They gradually narrow the sets until they come to a
final solution. [63] (p43)

To illustrate the power of set-based information relative to point-based information, Ward
et al.[63] use a simple example problem: scheduling a meeting. A conventional point-by-
point approach might begin with the meeting organizer picking a time and date. As other
participants are contacted, the original time may turn out to be unsatisfactory: a new time is
picked but now the organizer must go back to check with all the people who were contacted
previously. The new time may be unsatisfactory for them, requiring yet another change.
For large, busy groups, this process quickly becomes time-consuming and unwieldy. There
are two common strategies for shortening the search while retaining the point-by-point ap-

proach [63]. First, the group can meet briefly to decide when to have the meeting. This
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accelerates communication at the cost of the participants’ time. For automobile develop-
ment, this corresponds to collocating engineers that are working on the same project and
requiring them to meet more often. Second, one or more powerful members of the group
can dictate a time for the meeting, which is likely to produce a less than optimal solution,

albeit quickly.

A third, set-based approach to planning a meeting requires all paricipants to
submit the times that they are available, perhaps with preferences. A conve-
nient time can quickly be found by taking the intersection of all sets of available

times, a process now often automated. [63] (p44)

Ward et al. [63] observed five potential advantages to the set-based approach to design at

Toyota:

1. “Set-based concurrent engineering enables reliable, efficient communid&@jh.
In a conventional, point-based approach, every design change can invalidate all pre-
vious decisions. Moreover, changes will not necessarily converge. Conversely, in a
set-based approach, engineers communicate information that delineates the full set of
possible designs. As the design process proceeds, this set is narrowed, supplement-
ing without invalidating previous information. Set-based communication at Toyota
appears to have several consequences. First, it eliminates work that is subsequently
invalidated. “Toyota’s body designers waste little time on detailed designs that cannot
be manufactured because the manufacturing personnel can precisely define the set of
bodies that are manufacturable . [63]” Second, it reduces the number and length
of meetings. “Toyota’s engineers and suppliers can work relatively independently,
because each meeting communicates information about an entire set of designs. [63]”
Toyota also achieves a high level of concurrency in its engineering process without
collocating or dedicating its development teams. Third, set-based communication
eliminates a major incentive to delay work. With a point-based approach, engineers
downstream in the process may choose to delay making decisions because the design
is subject to change. Toyota’s suppliers always know the amount of imprecision in

their specifications and are therefore able to commit themselves accordingly. Finally,
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set-based communication can increase trust in working relationships. Informing a
supplier about the set of possible changes instead of simply providing the minimum

information encourages trust.

2. “Set-based concurrent engineering allows for greater parallelism in the process, with
more effective, early use of subteafg8]” In a set-based approach, downstream pro-
cesses can become involved as soon as the set of possible designs is sufficiently re-
fined. Manufacturing innovation that applies to a broad set of products may influence

product design.

3. “Set-based concurrent engineering bases the most critical, early decisions of63jita.
The earliest design decisions have the greatest impact on the ultimate quality and
cost [9, 10], but these decisions are made with the least data [62], and moreover, data
that is the least precise. Set-based methods allow Toyota engineers to explore the

space of possible designs before making important decisions.

4. "The set-based process promotes institutional learniBgsigners are notoriously
resistant to documenting their work, partly because they sense that documentation
is generally useless. [63]” Documenting a point-based design process provides di-
rections from one specific starting point through one particular path, to the current,
specific design. These directions are only useful to revisit the particular designs ex-
plored. At Toyota, team members systematically explore larger regions of the design
space. Lessons-learned books record the manfacturability of various body designs.
In this way, designers have available to them a clear and up-to-date map of the space

of manufacturable body designs, without even talking to a manufacturing engineer.

5. “Set-based concurrent engineering allows for a search of globally optimal de &js.
“Rapid inch-up” innovation can only find “local optima”: the best possible design
based on the current fundamental concept. Set-based concurrent engineering can
explore many different concepts and may potentially find better solutions based on

radically different concepts.

These five advantages are a compelling motivation for all set-based methods, including the

method of imprecision.
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In formalizing their own set-based methodology, Ward and Seering [64, 65] have devel-
oped a theory to propagate intervals with associated labels sudmas andOperating-

Region In relation to their work, the method of imprecision has focused not on the char-
acterization of the nature of each intervag( its “label”), but rather on the representation

of degrees of preference. In practice, the method of imprecision is manifestly set- and even
interval-based (see Chapters 3 and 5). Indeed, the methods described in this thesis are well
described by the third, set-based approach to planning a meeting quoted above. Fuzzy sets
are, after all, a generalization of ordinary crisp sets.

Many researchers have used fuzzy sets to represent imprecision in decision-making out-
side of engineering design [6, 16, 24, 27, 40, 41, 72]. Most of these formulations are based
on fuzzy “and” and “or” operators and are directed at modeling linguistic uncertainty and
fuzzy logic. Although the design approprigf,;, andPr aggregation functions are used
to combine fuzzy sets, two classes of functions that do not in general satisfy the annihilation
and idempotency axioms are commonly used for fuzzy decision-makingrms[36, 16]
andt-conorms T-norms are bounded above hyin. T-conorms are bounded below by
max.

Zimmerman and Sebastian [73, 74] andiiMi’ and Tlarigen [39] have applied fuzzy
sets to engineering design. Given the basic equivalence of preferences as defined in the
method of imprecision and membership as defined in fuzzy set theory, their methods are
similar to those described in this thesis. The fundamental choice of fuzzy sets to model
design imprecision yields the same mathematical entities to quantify and manipulate im-
precision. The method of imprecision is specifically directed at design decision-making in
particular, and thus the more intuitive notion of preference replaces membership. The ax-
ioms that define design-appropriate aggregation function are also specific to design. These
are a few of the distinctions between the two approaches that have arisen because of the
relatively specific focus of the method of imprecision on engineering design. The work of
Zimmerman and Sebastian [73, 74] has mainly been applied to configuration design.

A significant distinction of the method of imprecision is the inclusion of design prefer-
ences. The explicit representation of the customer’s indirect preferences anticipated by the

designer is unique to the method. Design preferences, however, must be mapped from the
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DVS to the PVS, which is a non-trivial additional step.

2.9 Conclusions

The method of imprecision models the design problem in terms of two separate spaces: the
design variable spacfVS) is the set of all design alternatives under active consideration,
and theperformance variable spad®VS) is the set of all quantified performances that are
achievable by the designs in the DVS. Design varialiles.., d,, distinguish design alter-
natives that the designer considers to be distinct for the purpose of analysis. Other attributes
of the design either are not under active consideration or cannot be directly specified. The
set of design variables forms arvector,d, that distinguishes a particular design alternative
in the DVS. Performance variables, ..., p, quantify design performance for each design:
pj = fj(cf). The mappingsfi, ..., f; can by any calculation or procedure to evaluate the
performance of a design, but a performance attribute must be explicitly quantified to be a
performance variable. The set of performance variables formseator, p’ = f (cf), that
specifies the quantified performances of a dedTgn

Imprecision is represented through quantifying the customer’s direct and indirect pref-

erences on design and performance variables:

e Functional requirements,, , ..., u,, quantify the customer’s direct preference on per-
formance variables based performance considerationshe quantified aspects of

design performance represented by performance variables.

e Design preferencegy,, ..., g, quantify the customer’s anticipated preference on
design variables based dlesign considerationghe unquantified aspects of design

performance not represented by performance variables.

The precise differentiation between design and performance variables, between design pref-
erences and functional requirements, and between design and performance considerations,
is a key contribution of this thesis.

The individual functional requirements and design preferences are aggregated into a sin-

gle overall preferencg,. High overall preference identifies preferred and hence promising
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designs and performances. Five axioms for rational design decision-making were presented
in Section 2.3: commutativity, monotonicity, continuity, annihilation, and idempotency. Of
these five, annihilation is specific to design. Annihilation is necessary so that a design
that is unacceptable in some aspect because it fails to meet a minimum requirement must
also be judged to be unacceptable overall. Including importance weightings necessitates a
redefinition of these axioms and the addition of a sixth axiom, self-normalization, which
allows weights to be freely scaled by any strictly positive constantThis property is
also useful where preferences are aggregated hierarchically. Aggregation functions that
satisfy the axioms for rational design decision-making are terdesign-appropriate In
Section 2.5, a family of hierarchically consistent, design appropriate aggregation functions
were defined using the weighted root-mean-power family of functions. This family of func-
tions P.., parameterized im, allow the degree of compensation to be continuously varied
from non-compensating®.—o = Puin) through partially compensating, fully compensat-
ing (P.—1 = Pru), and supercompensating, to maximally compensatfigd = Prax’)-
This family of aggregation functions, which represent the model decision-maker in the
method of imprecision, allow a broad range of degrees of compensation and satisfy postu-
lated axioms for rational design decision-making. They permit attributes to be weighted in
importance and they support hierarchical aggregation. Few of the decision-making methods
reviewed in Section 2.8 can match all of these claims (few methods have been specifically
developed for design decision-making). Thus it is suggested that, provided the axioms
of design-appropriateness adequately reflect the decision-maker’s notion of rationality, the
method of imprecision can indeed allow the decision-maker to define an aggregation hier-
archy that acceptably models how the decision-maker might actually trade-off preferences.
The electric vehicle example in Section 2.7 demonstrated the modeling of a design
problem, and in particular the process of identifying design variables, performance vari-
ables, and design considerations and constructing the design preference aggregation hierar-
chy. The elucidation of this process, in particular the construction of the design preference
hierarchy, is the second key contribution of this thesis. The modeling of performance con-
siderations as performance variables is not new and its suitability is not in debate. Whether

preferences suitably model imprecision with respect to performance variables is, however,
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as yet unproven: this issue will be addressed in Chapter 5. But the two key issues here are
first, whether the chosen means of representing and aggregating the customer’s anticipated
preferences on design variables is a suitable or even meaningful model of the design prob-
lem, and second, whether the suggested process for constructing the model is both feasible
and informative.

The specific issues discussed as design considerations, such as aesthetics and manu-
facturability, are clearly relevant to design, yet they are difficult to include in any formal
methodology. The work presented in this thesis not only allows the representation of these
“soft” issues, but introduces a clearly defined formal structure for quantifying their conse-
quences. Any relevant issue that can be related to a design variable can be modeled in this
way. That design issues can be formed into a hierarchy with importance weightings is not
controversial. The innovation of separating design considerations from performance con-
siderations may at first make little sense, but since performance considerations will be ex-
plicitly evaluated and their consequences calculated, only the design considerations remain
to be quantified on the design variables. Using the designer's experience and judgement
to project the customer’s preferences back onto the design variables is already common
practice. Indeed, a primary difficulty in implementing the method will be to selectively
turn off the designer's automatic mapping of all of the customer’s preferences onto design
variables. Representing design considerations as the customer’s anticipated preferences on
design variables is therefore a suitable model: it is not inconsistent with how a designer
thinks about design. Moreover, such a structure is also meaningful to the designer: it is
readily interpreted.

That the process of identifying design considerations and constructing the design pref-
erence aggregation hierarchy is feasible has been demonstrated for one specific example.
It is anticipated that this procedure will be feasible for any design problem for which the
designer has a sufficient understanding. However, the author is clearly not an expert on
electric vehicle design. Yet the process of enumerating design considerations, explicitly re-
lating design considerations to design variables, constructing a hierarchy, determining rel-
ative importance and degree of compensation in aggregation, and examining the resulting

model, forced a careful analysis of how the design variables impact design considerations,
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and as a result many important issues were clarified. This critical analysis of design consid-
erations separately and in relation to design variables and an aggregation hierarchy is itself
a valuable exercise. Thus it is suggested that the process of constructing the model is not
only feasible and informative, but also requires the designer to more clearly distinguish and

explicitly quantify the beliefs and preferences that are to be modeled.
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Chapter 3

Calculating Imprecision

“Now,” said Rabbit, “this is a Search, and I've Organized it—"
“Done what to it?” said Pooh.
“Organized it. Which means — well, it's what you do to a Search, when you

don't all look in the same place at once .”

A. A. Milne(1882-1956), “The House at Pooh Corner”

Chapter 2 described how individual preferences can be hierarchically aggregated into
an overall preference,. In implementing the method of imprecision, a key difficulty is
that design preferences are specified on the DVS and functional requirements are specified
on the PVS. f provides a forward mapping from the DVS to the PVS, but the backwards
mapping from the PVS to the DVS is typically not available. Hence design preferences
are first mapped onto the PVS. The mapped design preferences are then traded-off against
functional requirements to obtajn, (), the overall preference function on the P(§(p)
represents the combined preferences of the designer and the customer, expressed in terms
of design performancg. In order to obtainuo(cf), the overall preference on the DVS,
functional requirements must be mapped back onto the DVS and traded-off against design
preferencesuo(cf) identifies design configurations that are promising in terms of the com-
bined preferences of the designer and the customer.

This chapter describes computational methods that have been developed in order to

perform the calculations described above. The practical difficulties of mapping preferences
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from the DVS to the PVS while achieving efficiency in function evaluations are discussed
in Section 3.3. The methods developed utilize optimization (Section 3.2) and design of
experiments (Section 3.4). Many of these methods have been implemented in a computer

program, the Imprecise Design Tool, which will be described in Chapter 4.

3.1 The Level Interval Algorithm

After specifying design preferencgg, (d1), ..., 14, (d,) and functional requirements,, (p1), ..., fip, (Pq),
and identifying the appropriate hierarchy of trade-off strategies, the individuéd;) are

aggregated to obtaip,(d), the combined design preference on the DVf§(d) is then

mapped onto the PVS, using the extension principle [71]:

— - =

3.1) pa(p) = sup{pa(d) | 7= f(d)}

-

wheresup over the null set is defined to be zey;(d) is the combined design preference
on the DVS, as distinct from, (), the combined design preference on the PYZp) is
obtained by mappingd(cf) onto the PVS.
Individual functional requirements,, , ..., i1, are aggregated to obtajr (p), the com-
bined functional requirement on the PVS. The overall preference on the PVS is the aggre-

gation of uq(p) andp, (p):

(32) No(ﬁ) =P (Md(@? :up(ﬁ)) .

o (p) represents the combined preferences of the designer and the customer, expressed in

terms of design performance.

-

In order to obtairu,(d), the overall preference on the DVS, the combined functional

requirementu,(p) is mapped onto the DVS:

—

(3.3) 1p(d) = pp(p) = f(d).

Although up(cf) is easily calculated usinﬁfor any given desigmf, determining how the

—

preference functiom,(d) varies over sets of designs in the DVS is difficult without evalu-
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Figure 3.1 Discretized design preferenpg, .

ating f many times, especially because the inversg? sftypically not available.

The first problem to be addressed is how to map design preference from the DVS to the
PVS. Previouslyu,(p) has been calculated using thevel Interval Algorithmor LIA [69],
first proposed by Dong and Wong [15] as the “Fuzzy Weighted Average” algorithm and also
called the “Vertex Method.” The LIA define®! levels of preference, ..., ap;. The indi-
vidual design preference functiopg, (d;) are discretized inte-cut intervalsid; % . d; %% |
at these preference levels:

(3.4) i dihd = {4, () = o} k=1, M.

?min’ “?max

a-cut intervals for the design preferengg, are shown in Figure 3.1. These individugl

cut intervals are then combined to obtaircuts D¢

PIRR

., D¢ in the DVS which represent

aM

the combined design preferengg(d).
(3.5) D! ={deDVS|pu(d) > ax} k=1,.. M.

The LIA assumes that design preferences will be aggregated with a non-compensating
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Figure 3.2 The Level Interval Algorithm.

trade-off and thus combines the individuakuts by using the cartesian product:

(36) = [dlmmvdlmax] o X [d Ok Sk ] k= 1,...,M.

Nmin’ “'Mmax

Atthe heart of the LIA is an enumerative procedure to map the combined design preference

a—cutDZ onto individual intervalgp; ot . p;% ] in eachy;:

3.7) ik pi% ] = {p;j(d) € V; | pa(d) > ar}  k=1,.., M.

For eachoy, the LIA evaluategp; = f;(d ) for the 2™ permutations ofx-cut end points
which correspond to the corners of arcube defined b)ng (there aren design variables
andM a-cuts). Figure 3.2 illustrates how-cutngk in two design variableg; andd; are
mapped onto the intervg; ok . p;o« |. f; is evaluated at thg” = 4 corner points of each
D¢ rectangle. It is assumed thaf% andp;* will occur at these corner points, and
not |nS|deDg€k. Thus the minimum and maximugy among the four corner points defines
the interval[p;-% . p;%k ]. This is not true in general: the mappirfg : DVS — )); and
the combination functior® must satisfy certain conditions for the LIA to be exact [46]. In

practice, these conditions require thfatbe monotonic: a severe restriction.
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3.2 Optimization

The key limitation of the LIA, that it requires monotonicity, stems from the assumption that
the extreme values of; will occur at the corner points of th@ﬁk n-cube. The algorithm

may thus be improved by relaxing this assumption [34]. The problem, restated, is to find:

pjok. = min{p; = f;(d) | d € DL }

(3.8) pi%. = max{p; = f;(d)|de DI}

Finding extrema within a subset of the DVS is a constrained optimization problem.

In choosing an optimization technique, a trade-off must be made between computa-
tional cost and robustnesse(, the ability to find the correct global extremum for various
starting conditions). Traditional calculus-based optimization methods converge in relatively
few function evaluations but seek only local minima. Randomized search methods such
as genetic algorithms offer greater robustness [20] but require more function evaluations.
Where function evaluations are relatively expensive, as is common in engineering design,
traditional optimization methods are a pragmatic solution.

The computational implementation described in this thesis uses Powell’s method, a
calculus-based optimization algorithm that begins as a one at a time search. After each
iteration a heuristic determines whether to replace the direction of maximum decrease with
the net direction moved during the last iteration. This allows minimization down valleys
while avoiding linear dependence in the set of search directions [2]. Although optimization
algorithms usually assume that variables are continuous, optimization can also be applied
to discrete and mixed-discrete problems. In the aircraft engine design problem presented in
Section 4.1, for example, all eight design variables are discrete.

An important feature for a practical computational tool is a means to trade-off the num-
ber of function evaluations against accuracy and reliability. Such an adjustment enables the
designer to use the same program to obtain quick estimates as well as precise evaluations.
This is implemented as a user-specified fractional precision that defines termination criteria
for the optimization algorithm.

Suppose that it is necessary to incur the minimum number of function evaluations. A
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fractional precision of 1 would be specified, creating automatically satisfied termination
criteria, and the optimization would proceed through exactly one iteration of a one at a
time search using the maximum step size. The algorithm begins at one corner of the search
spaceng, and checks corners in each of thalirections given by, ..., d,,, moving to

the minimum each time. It expends+ 1 function evaluations to find each end point, and
therefore2n + 2 per a-cut, as compared t&" per a-cut for the LIA. This is a substantial
improvement, but the-cut interval obtained is only correct ff; is monotonic: none of the
interior points of theDZ n-cube are evaluated. Minimizing function evaluations in this
way carries the cost of implicitly assuming monotonicity.

If f; is known to be monotonic, this information can be used to further reduce the num-
ber of function evaluations. The first pass of the optimization algorithm identifies whether
fj increases or decreases in eagh Subsequent extrema can then be directly evaluated,
without the need for searching. Hence whgyes monotonic,n + 2 function evaluations

are required for the first-cut and2 for each subsequentcut.

3.3 Mapping Design Imprecision

In implementing the method of imprecision, a key step is mapping design prefergnce
from the n-dimensional DVS to the-dimensional PVS. If the individual design pref-
erencesuy, , ..., f4q, are to be combined with a non-compensating aggregation function

Puin, the combined design prefereneecuts D¢ ..., D¢ are given by the cartesian

ay? o

product of the individual design preferenaecuts [d;* | d;%_ ], as in the LIA. The re-

tmin’ ““max

suItanthl, ...,DgM sets, which arex-cubes in the DVS, precisely describe the aggre-
gation of individual preference intervals. But for aggregation functions other7han

the D¢

a1t

., D% n-cubes do not fully describe the combined design prefere@(:é). A

an

two-dimensional example will illustrate the correct geometry,gfd).

Figure 3.3 shows design preference interVad|S" , d;o% ] at ug = a1, oo, o for two

in» ““max

design variablesl; andd,. Recall that each intervall; %, d;i% ] defines the range of

values ford; over which the design preferengg, is at leasta;,. The combined design

preferenceu, obtained by aggregating these two discretized design preferences using an
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Figure 3.6 Combined design preferengg = Pr(pd, , td,)
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arbitrary aggregation functio® is shown (from above) in Figure 3.4. Three-dimensional
views of ug for Ppin andPr are depicted in Figures 3.5 and 3.6. Consider the center row,

for which do? < dy < dapd, and thereforeuy, = a3 (a3 is the highest preference).

max
Whered; ot < d; < di32., pay, > a1 and thuspy; > Plag,a3) = ag3. Similarly,
whered 02 < dy < di03 ), pa, > az andpug > P(ag,a3) = ags. Whered;03 <

di < 183, pna, = ag but P(as,as) = as by idempotency, and thys; = «as3. Note
that monotonicity (Axiom 2.14) ensures thats < as3 < a3, a2 < ag < ag3, and

a1 < g2 < g 3. BecausePin (a1, a2) = Pmin(1, a3) = aq andPuin (o2, a3) = g,

the discretizeduy(dy, ds) for P = Py is @ Mayan (e, rectangular, stepped) pyramid
with three levels.aq, as, andas (Figure 3.5). Each level of the pyramid is a rectangular

a-Cut ng = [dlak dl%kax] X [dgak d2ak

min’? min’ max
DY

!

|. Thuspg(di,ds) is precisely described by

three suchy-cuts D¢

1!

andDgB. For aggregation functions other th®,n, oz 3 rises
aboveas. The sides of the pyramid bulge outwards, although because of the discretization
of preference, this is manifested as an increase in preference levels along each side instead

of an outwards expansion (Figure 3.6). The rectangwaunts D¢ , D¢

! 2!

andD¢, remain
valid as long as the steps of the pyramid do not overlap. In this example, the only possible
overlap is ifa1 3 > ay. But to fully describeyq(d;, d2) for aggregation functions other
than Pni,, additional non-rectangular level sets must be definedvor, o 3, andas 3.
Thus the basic LIA must be further modified to accommodate aggregation functions other
thanP.,i,. Additional, non-rectangular level sets must be defined to correctly represent the
aggregation of the discretized individual design preferepges..., 14, into the combined
design preference,(d).

Consider the problem of mapping just the rectangulauts Dgﬁk from the DVS to
the PVS. The methods developed below are easily extended to deal with non-rectangular,

intermediate level sets. Eaﬂ?gk maps onto awm-cut ngk in the PVS viaf : DVS — PVS

— =

@ = f(d)).
(3.9) Pl ={p € PVS| pa(p) > an},

ngk will in general be neither g-cube, nor even defined by straight edges. But given
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the need to minimize the number of function evaluations and the preliminary nature of the
design information, the exact geometry]é)ik need not be calculated: an approximation is
sufficient. Indeed, ag, the number of performance variables, increases beyond 2, there is
little reason to pursue more accurate results that may be difficult or impossible to interpret,
especially Wherepd(cf) is described by multiple:-cubic and nom-cubic level sets, as
discussed above.

A straightforward extension of the LIA to deal with multiple performance variables
would use aj-cube approximation tcﬁ’gk defined by the cartesian product of the individual

H (e} .
intervals[p; " , pjglkax].

d
(3.10) Pl = Db P1th] X s X [Dgnts Pt -

This approximation is accurate only for severely restricfedndeed, f can only scale the
n-cubeng in the principalp; directions. There is also an implicit assumption thatfie

are independent, so that extrema can be independently determined. For these]?é?sons
is an inadequate approximation.

A superior approach is to selectively approximﬁm some simple functioﬁ over D¢
(thea-cut at infinitesimaly = ¢, where0 < e < 1). From Equation 3.5y-cuts with higher
preferencey are subsets af-cuts with lowera. ThusD? contains alkv-cuts with non-zero
« and includes all potentially acceptable (non-zero preference) design alternaD@s.

can then be directly mapped onto the PVS, ugf_'th linear approximation is the obvious

first choice:
1(d)
Fdy = | = flder) + A+ Ald — deg]
| fi(d)
f1(dey) Ay al ... Qip dy — d§"
(3.11) = : + o |+ ; ;
| foldex) A, agl - Ggn | | dn —dST

Wherecfctr is the center point oD¢ andA; is the distance thaﬁjf is offset fromf; at cfctr-
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Figure 3.7 Reducing the search space with linear regression.

The elements;; of the matrixA are linear regression coefficients that suitably approximate
fover the entire seach spaf¥. Although a linear approximation is not the only choice,
higher order approximations introduce additional complexity, both in the shape of the level
sets mapped onto the PVS and in the computational algorithm, that is not clearly justified.
It is assumed that the cost of each function evaluation is not negligible and that gradient
information is not readily available. Where these assumptions do not hold, other approaches
may be applicable, such as continuation methods [26].

It is conjectured that ifis not strongly non-linear, a linear approximation will be ade-
guate to sketch?ffk where the precise geometry is not required. During preliminary design,
approximate answers are sufficient. As the design is refined, the set of design alternatives
under consideration will be reduced in size. A linear approximation is likely be more ac-
curate over a smaller set of designs. The difficulty of interpreting an irreglﬂlgset with
curved boundaries in more than two dimensions suggests that a higher order approximation
may be of limited value for problems with more than two performance variables. Yet it is
important to consider where dng more accurate results might be desirable. Although the
detailed geometry ong need not be known precisely, certain points on its boundary will

be used to make design decisions, and these need to be determined with greater accuracy
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and reliability. The extremal points on the boundary% in each of thep; directions fall

into this category. These points are determined by optimization in the design variables that

are not acceptably linear [32]. Acceptably linear variables are approximated by regression

equations, thus shrinking the search space for optimization by one dimension (Figure 3.7).
A linear approximation also provides a simple measure of the sensitivity of each per-

formance variable to changes in each design variable. This can be related to valyes of

and normalized by the largest value separately for each performance variable to obtain a

relative measure of design sensitivity at discrete levels of preference.

Definition 3.1 The design sensitivity;?f is the sensitivity ofp; to the variation ind; de-

fined by thea-cut interval alo = oy, relative to the largest value aﬁi’“ for eachp; at the

lowestay,:
(3 12) KOk — a’ji(di%gx - dlgﬁn)
" (0% (0%
7 max{\/fjf 3 ey |"5er}
whereq; is the lowest value ofy;,. A

The design sensitivity?i’“ is distinct from they-level measure [67], which measures the

sensitivity of a performance variable to a design preference function exponentially weighted

A

about a given preference K measures the sensitivity of a performance variable to a

design preference function specifically at a preferemgenormalized with respect to the

largest value ok} V &, i for eachp;.

Qg
ji
the greatest influence, and indicates the sign of the linear coefficient. By comp@j’ing

For a particular performance variable, -/ identifies which design variables have

for different performance variables, appropriate design variables can be chosen in order to,
for example, reducg; and increase, simultaneously. Design sensitivities summarize the
information contained in the linear regression coefficients.

A final benefit of constructing a linear approximation is that it provides a computation-
ally tractable means to map the combined functional requirement from the PVS onto the
DVS. The reverse mapping fcf? is typically not available: given a performangethere
is no direct means of determining its pre-image| 7 = f(d)}. The linear approximation

f’ , however, can be reversed, though typically- ¢ (there will be more design variables
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than performance variables) and thus the pre-image of a single performavitde a set
of points in the DVS. The pre-imaggl | 7 = f’(d)} can be found by methods such as
Gaussian elimination. The combined functional requiremesut in the PVS is defined

analogously to the combined design preferenesut in the DVS:
(3.13) P? ={FePVS| (@) > ar} k=1,.. M.
The combined functional requirement mapped onto the DVBJs:
(3.14) Dp, ={d € DVS| i, (f(d)) > e},

The pre-image of?%, for f’ approximatesD?, :

(3.15) Dy ={d € DVS| iy (f(d)) > cn}.

Obtaining a linear approximatioﬂ fulfills four purposes: it removes acceptably linear
design variables from the search space for optimization; it supplies a global approximation
to fovengl for determining the geometry d?gfk between extremal points; it enables the
calculation of design sensitivities?i’“; and it provides a computationally tractable method
to map preferences from the PVS onto the DVS. The mappid@g’gfonto the PVS does
not, however, depend entirely upon the accuracy of the linear approximfatid'ﬂne shape
of ngk in the PVS is estimated by obtaining extremal points in gackia optimization
(facilitated by linear approximation), and then interpolating the bounding edges between
points usingf’.

It is not expected that many performance variables will be well modeled by a linear
approximation, even within a limited region of the DVS. But the linear approximajﬁon
furnishes additional information about the shapePﬁ[ away from extremal points that
would otherwise be unavailable. Withoﬁ’t, the geometry ong would only be known
at extremal points. f’ is used to provide approximate information not to replace precise

information, but to replace a lack of information. Useful information ad@t can still be

obtained even wherg,, ..., f, are all highly non-linear. Wherfis non-linear, the calcu-
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lated shape ong will be incorrect. But the extremal points obtained using optimization
do not depend upoif being linear. Moreover, even jf’ is completely unacceptable be-
causefi, ..., fq are all strongly non-linear id, ..., d,, ng (Equation (3.10)) defined by
the extremal values in eagh provides a bounding set fd?gfk.

Usuallyn > ¢: there will be at least as many design variables as performance variables.
If n = g andA is full rank, f’ maps thm-cubeng onto ann-parallelepiped in the PVS.
Otherwise,f’ projectngﬁk onto a¢’-dimensional polyhedron wherg < ¢ < n. This¢’-
dimensional polyhedron which iBgf}; is defined by the external surfaces of the projection
of ng via A. Sinceng is ann-cube, the directions of the parallel edgeatdt are given

by the columns oA:

ail A1n

(3.16) :

aql aqn

Every bounding edge d\"g; corresponds to an edge o)ivﬁk though some of the edges of

DZ. map to the interior oPgl;. As described above, optimization is used to more reliably
calculate extremal points in eagh. Modifying ng}; to match these points will distort the
geometry and edges may no longer be parallel. Additional accuracy may be obtained by
explicitly calculating the remaining corner points @rgf; which correspond to corners of

then-cubeD? that are not extrema in any.

Example

Suppose that for a particular design problem, therenate 4 design variables angl = 3
performance variables. The designer wishes to conduct a preliminary analysis to explore
how preferences on the design and performance variables intersect. Individual design pref-
erencesiy, , idy [ids» Hd, are specified as intervald;~* . d;o% | at two preference levels:

a1 = €, a2 = 1. An infinitesimal yet non-zero prefereneendicates a barely acceptable
variable value. Thex-cut interval ato; = ¢ identifies the largest acceptable interval of
values for the variable. Values outside this range have zero preference and are thus unac-

ceptable. Conversely, a preference of one indicates an ideal variable value.a-Cthe
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Figure 3.8 Approximated-cut Pﬁ/ on the PVS.
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interval atas; = 1 identifies the ideal or target range of values for the variable. Specifying
only two a-cuts is a minimal implementation that is limited to calculating the boundaries of
two sets: the set of acceptable designs and the set of ideal designs. Relatively few function
evaluations are required. This is consistent with a preliminary analysis. For this minimal
implementation, the distinction between aggregation functions is eliminated: at this level
of discretization, the design preference intervals lead to the sacubic combined design
preferencex-cuts D¢ and D¢ regardless of the aggregation functions used (this will be dis-
cussed in Section 5.1). Thesecubica-cuts fully describe the combined design preference

tq ON the DVSf’, the linear approximation to the mappiﬁg DVS — PVS would be ob-
tained by evaluating a central composite design dvérSuppose that the linear regression

coefficients in the matriA have been obtained in this way:

1.1 —012 2 068
(3.17) A=| —01 1 024 2
1.1 088 —124 1

P% the projection ofD¢ onto the PVS viaA, is shown in Figure 3.8.P% is a convex
polyhedron that approximates the actuatut P?. Four edges that correspond to the four
columns ofA are labeled:, ..., a4. These directions are the principal directiafis..., ds
mapped onto the PVS. The labeled corners are extrema ihese points are obtained by
optimization. The conventional optimization approach to this problem would be to search
for the optimalpy, p2, or p3, within a constrained search space suclgsThus ifp; is to
be maximized ang, andps are to be minimized, the information provided by optimization
would be limited to three of the points in Figure 3.8 labeled maxmin ps, and minps.
Instead, the method of imprecision uses optimization to find both extrema irpgacid
then constructs an approximation to the entiref¥etising the linear approximatioﬂ. The
accuracy of the extrema is dependent only on the accuracy of the optimization algorithm
used. Linear approximation is used to provide additional information: to fill in the gaps
between extrema and paint a more complete picture.

P% indicates the approximate region in the PVS within which> 0. The perfor-

manceg’ € Ped’ correspond to the performances achievable by all designs that are at least
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minimally acceptable with respect to design considerations (the unquantified aspects of
design performance not represented by performance variables). Functional requirements,
which arise from performance considerations (the quantified aspects of design performance
represented by performance variables) have not yet been included. Applying the combined
functional requirement.,(p) eliminates performancegs € P that are unacceptable be-
causeu,(p) = 0. The remaining subset of performances are acceptable relative to all
specified preferences.

Pld', which approximates the region in the PVS within whijgh = 1, will be a sub-
set of PY. The overall preference on the PV&,(), is obtained by aggregating,(p)
represented by these twecuts with the combined functional requiremeni(p). The es-
sential information given by, (), in this particular implementation, consists of the sets of

performances achievable by ideal and acceptable designs:

—

e designs withu,(d) = 1 are ideal, and

-

e designs withu,(d) > € are acceptable,

with respect to the preferences specified on the design and performance variables. Addi-
tionally, the effect of functional requirements on design performances is represented by
the variation ofu,(p) between the extremesand 1. Due to discretization, however, the
combined design preferengg is only mapped at the two extremes, and hence interme-
diate values ofi,(p) do not reflect the true variation @f;(). The combined functional
requirementy, () is mapped back onto the DVS using the linear approximafit{a).

-

The resulting functional requirement on the DV§(d), is aggregated with the combined

— — —

design preferencg,(d) to obtain the overall preferenge,(d). u,(d) identifies the ideal

— —

(1o(d) = 1) and acceptableu(,(d) > €) sets of designs described above.

3.4 Design of Experiments

The linear approximationg, ..., f,; are obtained using techniques adapted from statistical
design of experiments. Design of experiments seeks to derive information about a process
using as few observations as possible. It has two aims: to separate the effects to be mea-

sured from random noise, and to model the process with regression equations. The function



62

fj is treated as an unknown process. Note that if the process is determieigti@ com-

puter program, repeated evaluations will always give the same answer: the output contains
no random noise. Therefore, statistical significance tests to distinguish the signal are un-
necessary. This thesis discusses the use of experiment design only to model deterministic
functions (though statistical significance tests are a valuable technique for processes sub-
ject to noise). The techniques used rely on orthogonal arrays, which specify an efficient,
independent set of points at which the function is evaluated.

Orthogonal arrays are widely used not only for statistical design of experiments but
also for the related Taguchi Method or Robust Design methodology [50, 51] and their di-
rect application to engineering design is not new. Chi and Bloebaum describe a simple
and practical application of orthogonal arrays to a material selection problem for multi-bar
trusses in [8]. Korngold and Gabriele use experiment design to construct a global quadratic
approximation for a multi-disciplinary problem [28]: their methods are similar to those that
have been adopted here. A fundamental difference, however, is that Korngold and Gabriele
have sought to solve a highly complex and general problem from a necessarily abstract and
mathematical perspective. The work presented in this thesis seeks to apply experiment de-
sign techniques specifically to facilitate method of imprecision calculations, and adopts a
pragmatic approach that attempts to address the concerns of potential users. Engineers at
one major U.S. automobile manufacturer, for example, consider each function evaluation
to be a significant cost: it takes approximatélyseconds on a supercomputer to evaluate a
simplifiedfinite element model of a vehicle structure. Furthermore, most engineers do not
have the time to become experts on statistical techniques. New methodologies are expected
to come pre-packaged as out-of-the-box software. Using experiment design to obtain linear
regression models is efficient in function evaluations, does not require advanced statistical
techniques, and is well suited to computer implementation.

The approach is essentiallyresponse surface meth@dB], which seeks to optimize a
response that is influenced by several variables. The fungfimmodeled over the search
spaceD? (the a-cut at infinitesimala = ¢). The Imprecise Design Tool uses a 2-level
experiment design: two levels are sufficient to quantify linear effects. An additional center

point checks for curvature: non-linearity of the function in the interior of the search space.
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A full factorial design would evaluate the sar2fecorner points ofD¢ as the LIA, but since
there aren main effects and 1 average to be determined, anly 1 evaluations are strictly
necessary (excluding the center point). A fractional factorial design evaluates a balanced
subset of corner points and is more efficient. But in reducing a full factorial experiment to a
fractional factorial experiment, ti# interactions between thevariables are unavoidably
merged orconfoundedwith each other, so that their effects cannot be distinguished. A
key consideration is how interactions should be confounded. Main effects, which are to be
measured, must not be confounded with other main effects. Moreover, it is desirable only
to confound main effects with interactions that are unlikely to exist. It is assumed that main
effects, due to a single variable.q, d1, ds), are more likely than two-way interactions
(e.g, dida, di?), which are in turn more likely than three-wag.§, didads, di%ds, di?)

and higher order interactions.

Theresolutionof an experiment design indicates the degree to which it confounds in-
teractions. A resolution Il design confounds main effects with two-way and higher order
interactions, and thus satisfies the minimum requirement not to confound main effects.
A resolution IV design confounds main effects with three-way and higher order interac-
tions [4]. Resolution IV experiments provide more reliable information but require more
observations.

Forn = 8, the smallest resolution IV design i2¥* fractional factorial design requir-
ing 2* = 16 observations. The in 28~ indicates that the® full factorial design has been
“folded” in half 4 times. A resolution Il design would require 12 observations. Figure 3.9
compares the number of observations required for resolution 11l and IV designs using data
from [51]. Resolution Il designs approach the strictly necessagyt function evaluations.
Resolution IV designs require betwe2m and4n — 4 (wheren > 1) function evaluations.

Of the 16 function evaluations required for the= 8 resolution 1V design, 9 are strictly
necessary to estimate the 8 main effects and 1 average, and so there are 7 “redundant” eval-
uations. But these evaluations are not necessarily wasted: they allow main effects to be
separated from two-way interactions, and they provide 7 extra points to verify the accuracy
of the linear regression model.

The number of function evaluations can also be traded-off against accuracy for exper-
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Figure 3.9 Number of evaluations for a fractional factorial design.

iment design. The linear regression equations obtained replace the function where the ap-
proximation is acceptable (Figure 3.7). The criteria for “acceptable,” which determine how
accurately the function is modeled, can be directly related to the user-specified fractional
precision used by the optimization algorithm. This allows a single parameter to trade-off
computational effort against accuracy for both optimization and experiment design.

A fractional factorial experiment only evaluates corner points. Thus comparison with
the center point can only indicate whethgris non-monotonic and the degree to which
it is non-linear, and cannot distinguish the design variable in wificis non-monotonic
or non-linear. Iff; is non-linear ind;, f; will not accurately approximatg in d;: the
approximation is still valid ind; if this inaccuracy is within the user-specified precision.
But if f; is non-monotonic in;, f; is not a valid approximation id;. Monotonicity ind;
is the minimum condition fotl; to be acceptably linear. In order to estimate non-linearity
and non-monotonicity off; in eachd;, an additional “one-factor-at-a-time” experiment
is conducted. Figure 3.10 shows the points that would be evaluated for a resolution Ili
fractional factorial experiment (small dots) and a one-factor-at-a-time experiment (large

dots) where there are three design variables. The combined experiment is tefiaes a



65

d

Figure 3.10 Points evaluated in a central composite design.
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Figure 3.11 Number of evaluations for a central composite design.
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centered) central composite desif#8]. This arrangement was chosen in order to include
corner points of theD? n-cube without evaluating points outside?. Extrema within
D¢ are likely to be corner points. In the absence of these constraints, other arrangements
that seek to obtain a more balanced distribution of information over the search space are
possiblee.g, [38] and [21].

The number of function evaluations required for resolution Il and IV central composite
designs is indicated in Figure 3.11. If the functignis amenable to linear approximation,
a maximum ofin + 1 (resolution 111) or6n — 3 (resolution 1V) evaluations will be incurred
to obtain the regression equations and up to 2 evaluations will be required for the predicted
a-cut end pointsdn + 1 and6n — 3 evaluations both exceed thet 1 evaluations required

for a one at a time search, but the advantages are fourfold:

1. Monotonicity is not assumed: up 3@ — 5 “redundant” points test for monotonicity

and linearity.
2. The center point tests for curvature.
3. The entire data set is used in estimating each effect, instead of two points.
4. An even distribution of corner points is sampled, instead #f1 adjacent corners.

After calculating the linear regression matéx the constant offseta, ..., A, must
be determined (see Equation (3.11])}(5) must approximatg”j(ci} over the entire search
spaceD?. SettingA; = 0 would give a Taylor approximation which is accurate néar
only. SettingA; such thatf}(i) passes through the mean valuefgfci} over allevaluated
points would give a close approximation near the boundarieB%bnly, since only one
interior pointdqctr is evaluated. The Taylor expansion )E)f(cf) nearcfctr indicates that the
residual error in approximating; is equal to the offsef\; plus second and higher order

terms € = d — dey Where—L; < z; < L;, i = 1,...,n):

E@) = fidey+T) — fi(der + T)

= [ajl ajn]f-l- Aj - fj(d_;:tr + f)

z1

2 2
3.18 = A —-Kpn|l—| —Kpl—| —...—Kig—— - Kij3—— — ...
( ) j 11 (L1> 22 <L2> 12L1 i 13L1 s
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Figure 3.12 Minimizing fle E? dxq with offsetA; (f; = K11212).

For the purpose of determining an appropriate valueXorassume that the error in ap-
proximating f; is predominantly quadratic. In order to minimig(gg E? dV (the square
error integrated oveD?), A; should be set tc% >y Ky (Figure 3.12 illustrates a one-
dimensiona