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Evaluating Imprecision in Engineering Design

by

William S. Law

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

Imprecisionis uncertainty that arises because of vague or incomplete information. Prelimi-

nary design information is characteristically imprecise: specifications and requirements are

subject to change, and the design description is vague and incomplete. Yet many powerful

evaluation tools, including finite element models, expect precisely specified data. Thus it

is common for engineers to evaluate promising designs one by one. Alternatively, opti-

mization may be used to search for the single “best” design. These approaches focus on

individual, precisely specified points in the design space and provide limited information

about the full range of acceptable designs.

An alternative approach would be to evaluatesetsof designs. Themethod of imprecision

uses the mathematics of fuzzy sets in order to represent imprecision as preferences among

designs:

• Functional requirements model the customer’s direct preference on performance vari-

ables based onperformance considerations: the quantified aspects of design perfor-

mance represented by performance variables.

• Design preferences model the customer’s anticipated preference on design variables

based ondesign considerations: the unquantified aspects of design performance not

represented by performance variables.

Design preferences provide a formal structure for representing “soft” issues such as aes-

thetics and manufacturability and quantifying their consequences.
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This thesis describes continuing work in bringing the method of imprecision closer

to implementation as a decision-making methodology for engineering design. The two

principal contributions of this work are a clearer interpretation of the elements that comprise

the method and a more efficient computational implementation.

The proposed method for modeling design decisions in the presence of imprecision is

defined in detail. The decision-maker is modeled as a hierarchy of preference aggrega-

tion operations. Axioms for rational design decision-making are used to define aggregation

operations that are suitable for design. An electric vehicle design example illustrates the

method. In particular, the process of determining preferences and a preference aggregation

hierarchy is shown to be both feasible and informative. Efficient computational methods for

performing preference calculations are introduced. These methods use experiment design

to explore the design space and optimization assisted by linear approximation to map pref-

erences. A user-specified fractional precision allows the number of function evaluations

to be traded-off against the quality of the answer obtained. The computational methods

developed are verified on design problems from aircraft engine development and automo-

bile body design. Procedures for specifying preferences and group decision-making are

described. These procedures provide not only a pragmatic interpretation of the method,

but also an informal solution to the problem of bargaining: prerequisites for bringing the

method to design problems in the real world.
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Chapter 1

Introduction

To learn truly what each thing is, is a matter of uncertainty.

Democritus(ca 460–ca 370 B.C.)

Imprecisionis uncertainty that arises because of vague or incomplete information. Pre-

liminary design information is characteristically imprecise: specifications and requirements

are subject to change, and the design description is vague and incomplete. Precise infor-

mation about the final design is usually not available. Yet many powerful evaluation tools,

including finite element models, expect precisely specified data. Thus it is common for en-

gineers to evaluate promising designs one by one. Alternatively, optimization may be used

to search for the single “best” design. But these approaches focus on individual, precisely

specified points in the design space and provide limited information about the full range

of possible designs under consideration. This is illustrated in Figure 1.1, where individual

designs~d in the design variable space(DVS) are evaluated through a multi-dimensional

mapping~f(~d) to obtain multiple measures of design performance in theperformance vari-

able space(PVS). (The DVS is not necessarily Euclidean,i.e., Rn, though the PVS is

usually assumed to be.) The information provided is local to the individual design points

evaluated and short of evaluating a large number of points there is no systematic provision

for exploring the full space of designs.

An alternative approach would be to evaluatesetsof designs, as illustrated in Figure 1.2.



2

(Performance Variable Space)

PVSDVS
(Design Variable Space)

f(d)

Figure 1.1 Evaluating individual designs one by one.

DVS

(f(d))

PVS

Figure 1.2 Evaluating sets of designs.
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This seeks to provide information on the full range of acceptable designs. By distinguishing

subsets of designs that are in various ways preferred, this approach can explicitly model

design imprecision.

Themethod of imprecisionborrows the notion of membership in a fuzzy set in order to

represent preferences among designs. Fuzzy sets model uncertainty in categorization. The

set of tall men, for example, is fuzzy in that its boundaries are not precisely defined: it is

inaccurate to assume that a single, crisp height,e.g., 5 feet 9 inches, sharply distinguishes

tall men from not-tall men. Instead, membership, a real number between zero and one,

defines the degree to which an individual belongs to the set. In this example, the fuzziness

associated with the set of tall men is linguistic and stems from the inherent fuzziness in the

definition of “tall men.” Design imprecision is subtly different. The fuzziness associated

with a design specification is not fundamentally linguistic. Imprecise design information

is not fuzzy in meaning, but fuzzy in unresolved alternatives. Design imprecision is pro-

gressively reduced through design decisions until, ultimately, the final design is precisely

specified. Early in the design process, it is not clear to what degree each design alternative

reflects the final design that is as yet unknown. Although design imprecision is not a form

of uncertainty in meaning, it is still a form of uncertainty in categorization, for which fuzzy

sets are an appropriate representation. A direct application of fuzzy set theory would focus

on the membership of each design alternative in the set of possible final designs, presum-

ably also the set of best possible designs. This is, however, a somewhat esoteric notion and

thus instead of membership, the method of imprecision focuses on preferences: the actual

or anticipated preferences of the customer. This is a distinction in interpretation rather than

in mathematics, but it is nevertheless significant.

Simon French [17] has questioned the value of fuzzy sets in anormativeor prescriptive

theory of decision-making. In contrast to a descriptive decision analysis, a normative de-

cision analysis seeks to advise or guide the decision-maker. French [17] distinguishes two

ways in which a normative analysis can guide decisions:
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1. By example — through constructing amodel decision problem, invoking amodel

decision-maker, and hence arriving at an idealized yet representative decision.

2. Through the modeling process itself — defining a model decision-maker encourages

the exploration and clarification of the decision-maker’s own preferences and beliefs.

In this context, French [17] has raised three concerns, posed as questions, for fuzzy decision

analysis:

1. Is the model decision problem erected within a fuzzy analysis a suitable representa-

tion for real problems?

2. Do I (as the decision-maker) wish to emulate the “ideal” behavior exhibited by the

model decision-maker,i.e., do I accept the underlying canons of rationality?

3. Is the process of constructing the model decision-maker as a reflection of me both

feasible and informative; and is it helpful in guiding the evolution of my beliefs and

preferences?

These three questions will be used as a basis for discussing the contributions of this thesis.

The practical value of the methods developed in this work will be demonstrated to directly

address French’s concerns.

1.1 Organization of Thesis

This thesis builds on the work of Wood and Antonsson [66, 67, 68, 69] and Otto and Anton-

sson [43, 44, 46, 47, 69]. Their work has laid a broad theoretical foundation for the method

of imprecision. The work described in this thesis seeks, through examining the specific

rather than the general, and the practical rather than the theoretical, to bring the method

closer to implementation in industry. Its two principal contributions are a clearer interpre-

tation of the elements that comprise the method and a practical and efficient computational

implementation.

Chapter 2 is concerned with modeling imprecision in engineering design. Sections 2.1

and 2.2 present key definitions that form the foundation for the model decision problem that
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the method assumes. In particular, the modeling of imprecision in terms of preference is

defined. The model decision-maker is introduced in Sections 2.3 to 2.6. Axioms for rational

design decision-making are presented in Section 2.3. Section 2.4 discusses importance

weighting. In Section 2.7, an electric vehicle design example is presented to illustrate not

only the model decision problem and model decision-maker, but also the process by which

these models can be constructed. Section 2.8 surveys related work in design decision-

making under uncertainty.

Chapter 3 describes the algorithms used to perform preference calculations and dis-

cusses important issues in implementing the method of imprecision in a computational tool.

Section 3.1 describes previous work and motivates the development of improved methods

based on optimization (Section 3.2) and design of experiments (Section 3.4). The particular

difficulty addressed, that of mapping preference from the design variables to performance

variables, is discussed in detail in Section 3.3.

Chapter 4 introduces the Imprecise Design Tool, a computer program developed by

the author that implements the method of imprecision in order to verify the algorithms de-

scribed in Chapter 3 and to apply the method examples taken from industry. Two industrial

examples are presented: the first from aircraft engine development (Section 4.1) and the

second from automobile body design (Sections 4.2).

Chapter 5 discusses wider issues involved in implementing the method in industry. The

interpretation and specification of preferences is addressed in Section 5.1. Section 5.2

presents a scenario for implementation involving the electric vehicle example from Sec-

tion 2.7. An informal procedure for supporting group decisions is discussed. Section 5.3

lists the essential steps in the method of imprecision as presented in the electric vehicle

design scenario.

Chapter 6 summarizes the contributions of this thesis and returns to French’s three

concerns for fuzzy decision analysis. The work presented in this thesis addresses, within the

limited context of design decision-making under imprecision, each of French’s concerns.

Appendix A describes an algorithm to approximate a mapping through successively

subdividing the search space into tiles. This method ultimately proved to have severe lim-

itations. It is included for completeness and as an anecdote that speaks honestly about the
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reality of research.
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Chapter 2

Modeling Imprecision in Design

“Where shall I begin, please your Majesty?” he asked.

“Begin at the beginning,” the King said, gravely, “and go on till you come to

the end: then stop.”

Lewis Carroll (1832–1898), “Alice’s Adventures in Wonderland”

This chapter begins with fundamental definitions that underpin the model decision prob-

lem assumed by the method of imprecision. The notion of preference and how it is used

to represent imprecision is introduced in Section 2.2. The model decision-maker is mani-

fested as the aggregation functions that trade-off preference. Section 2.3 presents axioms

that attempt to define necessary conditions for aggregation functions to exhibit rationality

in design decision-making. Section 2.4 discusses importance weighting and re-casts the

axioms of rational design decision-making to include weights. The suitability of the model

decision problem constructed is supported by examples throughout the chapter. A more

detailed example involving the design of an electric vehicle is presented in Section 2.7.

Section 2.8 surveys related work in design decision-making under uncertainty by other re-

search groups.

2.1 Basic Definitions

Definition 2.1 Thedesign variable spaceor DVSis the set of design alternatives currently

under consideration. Λ
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Definition 2.2 Thedesign variablesd1, .., dn are the attributes that distinguish alternative

designs in the DVS. Λ

Design variables need not be continuous: the design variablestylingmay have the discrete

values “conservative” and “sporty.” The interval methods used to calculate imprecision,

however, require that discrete design variables are at least ordinal. Design variables do not

completely specify a design: they serve only to distinguish alternatives. Other attributes

of the design either are not under active consideration and have fixed values, or cannot be

directly specified and have uncontrolled values. Design variables serve to distinguish design

alternatives that the designer considers to be distinct for the purpose of analysis. Hence if

the designer is considering different lengths of a particular component, then that length

should be a design variable. Other variables, such as the width of the same component, do

not need to be design variables if they are not under active consideration.

Design variables should be independent: nodi should be a function of the otherd1, ..., di−1, di+1, ..., dn.

This does not imply that variables cannot be related to each other in any way, but merely

that no variable be redundant. For example, two design variablesinner diameterd1 and

outer diameterd2 are clearly related in thatd1 < d2, but neither is a function of the other.

Tube thicknessd3, however, is a function ofd1 andd2 and should not be defined as a third

design variable. Note that in this particular example, it would probably be more convenient

to choose as design variablestube thicknessand then eitherinner diameteror outer diame-

ter, to avoid having to ensure thatinner diameterwas less thanouter diameter. The choice

of design variables is thus not unique.

The set of valid values for the design variabledi is denotedXi. The whole set of design

variables forms ann vector,~d, that distinguishes a particular design alternative in the DVS.

Distinct ~d define distinct design alternatives. Conversely, distinct design alternatives will

be described by distinct~d.

In order to eliminate inferior design alternatives and refine the set of designs under con-

sideration, designs need to be evaluated. Design evaluation seeks to predict how well a

design alternative will perform when it is ultimately evaluated by the customer. “Perfor-

mance,” in general, has many aspects: rarely is it feasible to quantify all of them.
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Definition 2.3 The performance variablesp1, ..., pq are the aspects of a design’s perfor-

mance that are explicitly quantified. Each performance variablepj is defined by a mapping

fj such thatpj = fj(~d). Λ

The mappingsf1, ..., fq can be any calculation or procedure to evaluate the performance

of a design, including closed-form equations, computational algorithms, “black box” func-

tions, prototype testing, and market research. A design variable can also be a measure of

design performance and hence a performance variable.Weight, for example, could be a

design variable describing distinct design alternatives while also being a performance vari-

able that the customer is interested in. The set of valid values for a performance variable

pj is denotedYj. The set of performance variables for each design alternative forms aq

vector,~p = ~f(~d), that specifies the quantified performances of a design~d. Other aspects of

performance which are not quantified are not formally modeled as performance variables,

and are excluded from~p.

Definition 2.4 Theperformance variable spaceor PVSis the set of all quantified perfor-

mances~p = ~f(~d) that are acheivable by designs~d ∈ DVS. Λ

2.2 Representing Imprecision

Design and performance variables are initially imprecise: they may potentially assume any

value within a possible range because the designer does not know,a priori, the final value

that will emerge from the design process. Yet even though the designer does not know

which value will ultimately be specified, certain values will be preferred over others. This

preference is used to quantify the imprecision associated with a variable.

Performance variables attempt to predict how the design will perform in the eyes of

the customer, and hence for performance variables it is the customer’s preferences that

should be quantified, even if it is the designer who estimates them. Thus preferences on

the time required to accelerate from 0 to 60 mph for an automobile, for example, are the

customer’s anticipated preferences, even if the customer has no stated preference on the

0–60 time in particular: the 0–60 time correlates with the average acceleration over the

speed range of the engine [37], which in turn correlates with perceived acceleration and
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Figure 2.1 Imprecise functional requirement “less than 8 seconds”.

vehicle performance. These issues, which together determine preferences on performance

variables, will be referred to asperformance considerations.

Definition 2.5 The functional requirementµpj(pj) represents the preference that a cus-

tomer has for values of the performance variablepj:

µpj(pj) : Yj → [0, 1] ⊂ R. Λ

µpj(pj) quantifies the customer’s preference for values ofpj and is distinct from the cus-

tomary membership function in a fuzzy set, which quantifies the extent to which values

belong to the set. An example functional requirement on the performance variable0–60

time might at first be given as “less than 8 seconds.” Further elicitation would reveal the

imprecision associated with the nominally crisp value “8 seconds,” resulting in a prefer-

ence functionµp1, wherep1 is 0–60 time, as shown in Figure 2.1. Values ofp1 ≤ 6s

haveµp1 = 1 and are most preferred or ideal. Values ofp1 ≥ 9s haveµp1 = 0 and are

unacceptable.

The basis for preferences among values of a design variable is less obvious. Design

variables distinguish alternative designs: two different values of a design variabledi in-

dicate two distinct designs, but the values ofdi do not indicate if one design is preferred

over the other. Design variables do not directly measure design performance and hence the

customer has no direct basis for preferring any particular design variable value. The length
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of the rear axle of an automobile, for example, is not a variable of much interest to the typi-

cal customer. Yet choosing different axle lengths will affect aspects of design performance

such as vehicle handling thatare of interest to the customer. Some of these aspects will

be quantified and hence modeled as performance variables. The customer’s preferences

on these performance considerations are already represented as functional requirements.

Other aspects of design performance that are not directly related to explicitly quantified

performance variables are as yet not modeled and the preferences that exist on these at-

tributes have not been represented. These preferences, corresponding to aspects of design

performance that are not explicitly modeled as performance variables, are represented as

preferences on the design variablesd1, ..., dn.

Definition 2.6 The design preferencefunction µdi
(di) represents the preference that the

designer has for values of the design variabledi based on aspects of design performance

that are not already represented by performance variables:

µdi
(di) : Xi → [0, 1] ⊂ R. Λ

Because the customer has no direct basis for preferences among values of a design vari-

abledi, the designer must decide how values ofdi influence unquantified aspects of design

performance which are not represented by performance variables. Specifying a design pref-

erenceµdi
relies on the designer’s experience and judgement in three ways:

1. to determine which unquantified aspects of performance to consider and their relative

importance,

2. to estimate how values of the design variabledi affect each unquantified aspect of

performance considered, and

3. to anticipate the customer’s preferences on these unquantified aspects of performance.

In specifying a preference function on the design variablerear axle length, the designer

might consider that vehicle cornering, suspension geometry constraints, and manufactura-

bility are the most important unquantified aspects of performance. Additionally, experience
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may lead the designer to define minimum and maximum lengths based on previously suc-

cessful and unsuccessful vehicle drivetrain designs. These issues, which guide the specifi-

cation of design preference, will be referred to asdesign considerations. Because vehicle

cornering, suspension geometry, manufacturability, and the experience gained from pre-

vious vehicle drivetrain designs will not be explicitly quantified, design preferences are

the only means of including these important aspects of design performance. Design prefer-

ences represent preferences on relevant aspects of design performance that are not explicitly

quantified and hence would otherwise be omitted.

2.3 Aggregating Preferences

In order to evaluate designs~d ∈ DVS, the various individual preferences must be combined

or aggregated to give a single, overall measure.

Definition 2.7 Theoverall preferenceµo(~d) combines the preferences of the designer and

customer for a particular design~d and is a function of the design preferencesµdi
(di), and

the functional requirementsµpj(pj) = µpj(fj(~d)):

µo(~d) = P
(
µd1(d1), ..., µdn (dn), µp1(f1(~d)), ..., µpq (fq(~d))

)
. Λ

Theaggregation functionP reflects the trade-off strategy, which indicates how competing

attributes of the design should be traded-off against each other [44, 45].

An airplane can be made lighter, but this action will probably increase man-

ufacturing cost. One of the most difficult aspects of product development is

recognizing, understanding, and managing such trade-offs in a way that maxi-

mizes the success of the product. [60] (p5)

The trade-off strategy formalizes the designer’s balancing of conflicting goals and con-

straints. The overall preference embodies the preferences that the designer expresses on

design variables as well as the preferences that the customer expresses on the performance
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variables. Overall preference may be expressed on the DVS,µo(~d), or on the PVS,µo(~p):

µo(~p) will be defined in Section 3.1. The set of design configurations that maximizeµo is

denotedX ∗. Such peak preference designs~d ∈ X ∗ are “most preferred” with respect to the

design and performance variables modeled:

∀~d ∈ X ∗ µo(~d) = µ∗
o = sup{µo(~d) | ~d ∈ DVS}.

µ∗
o is the peak overall preference in both the DVS and the PVS [47]. The set of performances

that correspond to the set of peak preference designsX ∗ is denotedY∗ = ~f(X ∗).

The following five axioms have been suggested as necessary conditions in order forP
to reflect how a designer might rationally trade-off preferences [43] (setN = p + q):

Axiom 2.8 Commutativity:

P(µ1, ..., µj , ..., µk, ..., µN ) = P(µ1, ..., µk, ..., µj , ..., µN ) ∀j, k.

A basic condition is that the overall preference should not depend on the order of the pref-

erences being combined.

Axiom 2.9 Monotonicity:

P(µ1, ..., µk, ..., µN ) ≤ P(µ1, ..., µ
′
k, ..., µN ) for µk ≤ µ′

k ∀k.

As any single preference increases or decreases, the overall preference should either move

in the same direction, or not at all. An aggregation function that does not satisfy mono-

tonicity would allow a design with the same preferences as a second design but with a

lower preference on one particular variable, to have a higher overall preference. If two bi-

cycle designs differ only in that one is lighter (hence higher preference on the performance

variableweight), then only an irrational trade-off strategy would prefer the heavier design.
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Axiom 2.10 Continuity:

P(µ1, ..., µk, ..., µN ) = lim
µ′

k→µk

P(µ1, ..., µ
′
k, ..., µN ) ∀k.

Two designs with the same preferences on all variables except one, for which the prefer-

ences differ infinitesimally, should have similar overall preferences. An aggregation func-

tion should not create discontinuities in the overall preference where there are no disconti-

nuities in the preferences that are being aggregated.

Axiom 2.11 Idempotency:

P(µ, ..., µ) = µ.

If all aspects of a design are equally satisfactory and have the same preferenceµ, then

the overall preference should also beµ. A non-idempotent aggregation function would be

either optimistic or pessimistic in aggregating preferences and would introduce an artificial

bias.

Axiom 2.12 Annihilation:

P(µ1, ..., 0, ..., µN ) = 0.

A preference of0 is defined as representing complete dissatifaction: the variable value spec-

ified is unacceptable. Unacceptability implies that the design has failed to meet a minimum

requirement. If any aspect of a design is in this way unacceptable, the entire design must be

unacceptable. If, for example, an electric vehicle design has unacceptably high structural

stresses, no enhancement in cost, vehicle performance, range, or styling can compensate.

These design axioms do not define rational decision-making in general, but merely

indicate necessary conditions for aggregation functions within a fuzzy model of engineering

design such that these functions appropriately reflect how designers rationally aggregate

preferences. Fung and Fu [18] define a similar set of axioms for rational decision-making

in general: commutativity, monotonicity, continuity, idempotency, and associativity. With
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the exception of associativity, which is included in the definition of hierarchical aggregation

functions in Section 2.6, these axioms are a subset of the five design axioms. It is apparent

that the annihilation axiom is particular to design. Yet it is a corollary to the definition

of zero preference as failure to meet a minimum requirement. The annihilation axiom is

necessary to ensure that every acceptable design meets all minimum requirements.

Aggregation functions that satisfy the five design axioms shall be termeddesign-appropriate.

A variety of design-appropriate aggregation functions exist. The choice of aggregation

function is, however, not one that the designer is free to make: the appropriate trade-off

strategy is usually dictated by the design problem. Although it is the designer who balances

the different attributes of the design, it is the relationship between attributes, a property of

the design problem itself, that determines how they should be traded-off.

Consider a system of components, where the failure of one component results in the

failure of the system such that the entire assembly must be replaced. A high preference

corresponding to a long time to failure for one component cannot compensate for a low

preference corresponding to a short time to failure for another component. Only the lowest

preference should be considered in evaluating the design: higher preferences for other at-

tributes of the design cannot compensate for a lower preference. This is anon-compensating

trade-off strategy for which the aggregation function is the minimumPmin:

µo(~d) = min
(
µd1, ..., µdn , µp1, ..., µpq

)
.(2.1)

This is Bellman and Zadeh’s [6] hard “and” operation for fuzzy sets, which does not allow

attributes to be traded-off against each other. Yager [70] notes that this choice of aggrega-

tion function leads to the classic max-min solution from game theory.

Alternatively, consider an ordinary household battery, and in particular the performance

variables battery life (energy stored) and unit cost. A different relationship exists between

these two variables. Low unit cost can partially compensate for short battery life and long

battery life can partially compensate for high unit cost. Name brand alkaline batteries are

examples of long life, high cost designs. Generic batteries are examples of low cost, short

battery life designs. The two attributes unit cost and battery life can be traded-off against
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each other, so that a more acceptable attribute partially compensates for a less acceptable

attribute. This can be modeled as afully compensatingtrade-off strategy for which the

aggregation function is the geometric weighted mean or product of powersPΠ:

µo(~d) =

 n∏
i=1

µdi

q∏
j=1

µpj


1

n+q

.(2.2)

This is Bellman and Zadeh’s [6] soft “and” operation for fuzzy sets, which corresponds to

the Nash solution from game theory [70].

The aggregation functionsPmin andPΠ, which correspond to non-compensating and

fully compensating trade-off strategies, are two limiting cases in a family of design-appropriate

aggregation functions identified by Scott and Antonsson [54]. This class of functions will

be introduced in Section 2.5.

2.4 Weights

The relative importance of different attributes of the design must be considered in combin-

ing their corresponding preferences. This is achieved by assigning individualweightsto

each variable:

ωdi
≥ 0

ωpj ≥ 0.

Each weightω quantifies the importance of its associated variablerelativeto other variables.

It has been proposed that importance is a function of design and performance vari-

ables [43]. Consider, for example, one link of a multi-link vehicle suspension system. The

longitudinal stress in this component becomes an important, indeed critical, variable as it

approaches the yield stress of the material. Yet ordinarily the stress in this particular com-

ponent would not be considered especially important. This suggests that the corresponding

importance weighting should vary with the stress in order to correctly represent the change

in perceived importance. But this is not necessary within the method of imprecision because

specifying a preference of zero or close to zero ensures that the stress in this component
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becomes the critical attribute, because of the axioms of annihilation and continuity. The

variation of importance with a variable’s value reflects the shifting criticality of variables

relative to each other. This shift in criticality is already modeled by preference functions

on design and performance variables. Weights need only model the relative importance of

variables within the context of the design problem, without reference to specific designs~d

or performances~p.

In order to account for relative importance, aggregation functions must now aggregate

preference and weight,i.e., (µ, ω) pairs. Note that preferences are functions of the variables

they represent, but weights are constants. The axioms for design-appropriateness must be

redefined to include weights:

Axiom 2.13 Commutativity:

P((µ1, ω1), ..., (µj , ωj), ..., (µk, ωk), ..., (µN , ωN )) =

P((µ1, ω1), ..., (µk, ωk), ..., (µj , ωj), ..., (µN , ωN )) ∀j, k.

Axiom 2.14 Monotonicity:

P((µ1, ω1), ..., (µk, ωk), ..., (µN , ωN )) ≤ P((µ1, ω1), ..., (µ′
k, ωk), ..., (µN , ωN ))

for µk < µ′
k ∀k

P((µ1, ω1), ..., (µk, ωk), ..., (µN , ωN )) ≤ P((µ1, ω1), ..., (µk, ω′
k), ..., (µN , ωN ))

for ωk < ω′
k whereµj ≤ µk ∀j 6= k ∀k.

Increasing the importance of the most preferred attribute should not decrease the overall

preference.
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Axiom 2.15 Continuity:

P((µ1, ω1), ..., (µk, ωk), ..., (µN , ωN )) =

lim
µ′

k→µk

P((µ1, ω1), ..., (µ′
k, ωk), ..., (µN , ωN )) ∀k

P((µ1, ω1), ..., (µk, ωk), ..., (µN , ωN )) =

lim
ω′

k→ωk

P((µ1, ω1), ..., (µk , ω′
k), ..., (µN , ωN )) ∀k.

Aggregation functions should be continuous in preferences and in weights.

Axiom 2.16 Idempotency:

P((µ, ω1), ..., (µ, ωN )) = µ.

Axiom 2.17 Annihilation:

P((µ1, ω1), ..., (0, ωk), ..., (µN , ωN )) = 0 whereωk 6= 0 ∀k

P((µ1, ω1), ..., (µk , 0), ..., (µN , ωN )) =

P((µ1, ω1), ..., (µk−1, ωk−1), (µk+1, ωk+1), ..., (µN , ωN )) ∀k.

A weight of0 is defined as removing the attribute from consideration.

Weights have been defined without an upper bound on their value and without the neces-

sity for normalization. Thus an additional axiom is required to correctly aggregate weights.

Axiom 2.18 Self-normalization:

P((µ1, λω1), ..., (µN , λωN )) = P((µ1, ω1), ..., (µN , ωN )) whereλ > 0.

Self-normalization allows groups of weights to be freely scaled by any strictly positive

constantλ. This is a necessary property for hierarchical aggregation, which is discussed

in Section 2.6. Design-appropriate weighted aggregation functions must satisfy Axioms
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2.13–2.18. Note that non-weighted aggregation functions are a special case of weighted

aggregation functions with uniform weights.

2.5 Weighted Means

This section discusses the class of functions known as the (quasilinear) weighted means [1]:

P((µ1, ω1), ..., (µN , ωN )) = g

(
ω1g

−1(µ1) + ... + ωNg−1(µN )
ω1 + ... + ωN

)
(2.3)

whereg is a strictly monotonic, continuous generating function with inverseg−1; g(0) ≤
µ1, ..., µN ≤ g(1); ω1, ..., ωN ≥ 0; andω1 + ... + ωN > 0. Scott and Antonsson [54] show

that the properties of the weighted mean include all the properties of design-appropriate

weighted aggregation functions except for annihiliation (Axiom 2.17). Thus any weighted

mean that satisfies annihilation is design-appropriate. Properties of the weighted mean that

are sufficient to define the form of Equation (2.3) can be derived from the remaining design

axioms (2.13–2.16, and 2.18) with the additional assumption of strict monotonicity [54].

Hence any strictly monotonic design-appropriate aggregation function must be a weighted

mean.

The weighted root-mean-power family of functions is generated by the functiong(µ) =

µs [1]:

Ps((µ1, ω1), ..., (µN , ωN )) =
(

ω1µ1
s + ... + ωNµN

s

ω1 + ... + ωN

) 1
s

(2.4)

where the parameters ∈ R andg(0) = 0 ≤ µ1, ..., µN ≤ g(1) = 1. Weighted root-mean-

power functions that satisfy annihilation are design-appropriate. A weighted mean satisfies

annihilation if and only iflimµ→0 g−1(µ) is unbounded [54].limµ→0 µ
1
s is unbounded for

s ≤ 0 only. HencePs wheres ≤ 0 is a class of design-appropriate aggregation functions.

Consider the limiting cases ofs = 0 ands = −∞. Ps=0 is the product of powersPΠ
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in its weighted form [54]:

Ps=0((µ1, ω1), ..., (µN , ωN )) =

(
N∏

k=1

µk
ωk

) 1
ω

whereω = ω1 + ... + ωN .(2.5)

Ps=−∞ is Pmin without weights [54]:

Ps=−∞((µ1, ω1), ..., (µN , ωN )) = min (µ1, ..., µN ) .(2.6)

Ps≤0 interpolates between the non-compensating and fully compensating trade-off. The

degree of compensation increases ass increases from−∞. Intermediate trade-offs corre-

sponding to intermediate values ofc shall be termedpartially compensating. The class of

functionsPs≤0 is not unique in interpolating betweenPmin andPΠ: there exist other gen-

erating functions that give rise to design-appropriate aggregation functions that trade-off

preferences differently [54].

ThatPmin andPΠ define the limits of the family of design-appropriate functionsPs≤0

suggests that the non-compensating and fully compensating strategies represent extremes

in design-appropriate trade-offs. Indeed, Yager [70] suggests that “these forms may repre-

sent in the oriental sense the Yin and the Yang. . . .” Idempotency and monotonicity ensure

that no design-appropriate aggregation function can generate values less thanPmin for any

set of input preferences. ThusPmin defines a lower bound for design-appropriate functions

in general [54]. Idempotency and monotonicity also ensure that the maximum is an upper

bound for design-appropriate aggregation functions. The maximum, however, fails to sat-

isfy annihilation and is not design-appropriate. Moreover, a functionmax′ defined as equal

to max except where annihilation requiresmax′ = 0, would fail to satisfy continuity where

the function transitions [54]. Thus a maximal design-appropriate aggregation function

Pmax′ would be as close as possible tomax′ while maintaining continuity nearµk = 0. PΠ

does not define an upper bound for design-appropriate aggregation functions, even though

it defines the upper bound of a particular class of design-appropriate aggregation functions.

The class of functionsPs>0 do not satisfy annihilation, but are compatible with the

remaining design axioms. Therefore, a class of design-appropriate aggregation functions
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could be loosely defined in a similar manner as the maximal design-appropriate aggregation

function described above:

Ps>0′((µ1, ω1), ..., (µN , ωN )) =


Ps>0 if µ1, ..., µN ≥ δ

0 if µk = 0, ωk 6= 0, 1 ≤ k ≤ N

Pδ otherwise

(2.7)

where0 < δ � 1 andPδ continuously interpolates betweenPs>0′ = 0 at µk = 0 and

Ps>0′ = Ps>0 at µk = δ. In practice, it is not necessary to defineδ or Pδ except thatδ

is distinguishably greater than0, but is less than the lowest distinguishably greater than0

preference specified (i.e., δ is small but not infinitesimal). The discretization of preferences

that obviates a precise definition ofPs>0′ is discussed in Section 5.1.

Ps>0′ interpolates betweenPΠ, the fully compensating trade-off, andPmax′ , the maxi-

mal design-appropriate aggregation function. Ass increases to+∞ the degree of compen-

sation increases such that smaller increases in a higher preference compensate for larger

decreases in a lower preference. This willingness to trade a small gain for a large loss im-

plies thatPs>0′ is a family of supercompensatingaggregation functions. At the extreme,

Pmax′ judges a design by its best attribute, except where another attribute is close to unac-

ceptable (µk < δ). This may not be irrational, but it is difficult to envision a design problem

for whichPmax′ would be an appropriate trade-off strategy.

The parameters is unwieldy and not readily interpreted. A parameterc can be suitably

defined to represent the degree of compensation on the interval[0, 2]:

c = 1 +
s

k + |s| wherek > 0(2.8)

such that

s(c) = k
c − 1

1 − |c − 1| s(0) = −∞, s(1) = 0, ands(2) = +∞.(2.9)

The constantk should be set to some positive value such that intermediate values ofc rep-

resent appropriate degrees of compensation. A suitable value fork has not, as yet, been

determined. It is future research. The value fork should be determined in conjuction with
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non-compensating Pmin s = −∞ c = 0
partially compensating Ps<0 −∞ < s < 0 0 < c < 1

fully compensating PΠ s = 0 c = 1
supercompensatingPs>0′ 0 < s < ∞ 1 < c < 2

maximally compensating Pmax′ s = ∞ c = 2

Table 2.1 Design-appropriate aggregation functions based on the weighted
means, parameterized ins andc.

a, perhaps informal, definition of what the degree of compensationc represents. Currently

only three values are pinned down:c = 0 is non-compensating,c = 1 is fully compen-

sating, andc = 2 is maximally (super-) compensating. A family of design-appropriate

aggregation functions may be defined by combiningPs≤0 andPs>0′ , and reparameterizing

in c:

Pc((µ1, ω1), ..., (µN , ωN )) =

 Ps≤0 s = k(1 − 1
c ) if 0 ≤ c ≤ 1

Ps>0′ s = k( 1
2−c − 1) if 1 < c ≤ 2

.(2.10)

Table 2.1 summarizes the continuum of aggregation functions defined byPc.

2.6 Hierarchical Weighted Design

Within a single design problem, different groups of attributes may require different trade-

off strategies. In the design of a consumer product, for example, certain variables related

to safety might require a non-compensating trade-off, while other variables related to con-

venience or portability would require a compensating trade-off. In general, preferences

for individual attributes will need to be successively aggregated by a hierarchy of different

trade-off strategies. Each aggregation operation must aggregate not only preferences but

also weights, such that aggregating the (preference, weight) pairs corresponding to indi-

vidual attributes results in an aggregated (preference, weight) pair. A hat will be used to

denote (preference, weight) pairs:µ̂ = (µ, ω). Aggregation operations that aggregate both
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preference and weights will also be denoted by a hat:

P̂(µ̂1, ..., µ̂N ) = (Pµ(µ̂1, ..., µ̂N ),Pω(ω1, ..., ωN )).(2.11)

Suppose that theN = n+q design and performance variables are split into two subsets

so that a different trade-off strategy can be applied to each:

µ̂o = (µo, ωo)

= P̂(µ̂1, ...µ̂N )

= P̂III

(
P̂I(µ̂1, ..., µ̂k), P̂II(µ̂k+1, ..., µ̂N )

)
.(2.12)

This is a hierarchical form of Definition 2.7. How should the subordinate aggregation

operationsP̂I and P̂II and the superordinate aggregation operationP̂III be defined? If

a particular trade-off,Pc (Equation (2.10)) with an appropriate degree of compensationc,

is used to aggregate preferences for allN variables, thenPµ
I , Pµ

II , andPµ
III must satisfy

Equation (2.12) forPµ = Pc. Yet this condition does not uniquely specifyPµ
I , Pµ

II , and

Pµ
III , nor does it indicate how weights should be aggregated.

The form of the weighted mean (Equation (2.3)) suggests that aggregated weights

should be added if a weighted mean is used to aggregate preferences:

Pω(ω1, ..., ωN ) = ω1 + ... + ωN .

This definition ofPω is consistent with Equation (2.12) ifPµ, Pµ
I , Pµ

II , andPµ
III , are all

defined to be the same weighted mean:

Pω (Pω(ω1, ..., ωk),Pω(ωk+1, ..., ωN )) = Pω (ω1 + ... + ωk, ωk+1 + ... + ωN )

= ω1 + ... + ωk + ωk+1 + ... + ωN

= Pω (ω1 + ... + ωN )(2.13)
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Pµ
(
P̂(µ̂1, ..., µ̂k), P̂(µ̂k+1, ..., µ̂N )

)
= Pµ ((µI , ωI), (µII , ωII))

= g

(
ωIg

−1(µI) + ωIIg
−1(µII)

ωI + ωII

)

= g

(ω1 + ... + ωk)g−1
(
g
(

ω1g−1(µ1)+...+ωkg−1(µk)
ω1+...+ωk

))
+ ωIIg

−1 (µII)

ω1 + ... + ωk + ωII


= g

(
ω1g

−1(µ1) + ... + ωkg
−1(µk) + ωk+1g

−1(µk+1) + ... + ωNg−1(µN )
ω1 + ... + ωk + ωk+1 + ... + ωN

)
= Pµ (µ̂1, ..., µ̂N )(2.14)

Thus the use of an aggregation operation(Pµ,Pω), wherePµ is a weighted mean and

Pω is the arithmetic sum, has been shown to be hierarchically consistent. ThePs family

of weighted means generated byg(µ) = µs therefore defines hierarchically consistent

aggregation operations, as do thePs≤0 subset of design-appropriate aggregation functions.

The specially definedPs>0′ (or Pc>1) family of design-appropriate aggregation functions

must be separately shown to be hierarchically consistent wherePs>0′ differs from Ps>0,

i.e., where there exists a preferenceµk < δ.

Whereµk = 0 for somek, annihilation requires that the aggregated preference be zero

and that this zero preference be propagated up the hierarchy. This is clearly satisfied since

Ps>0′ is defined to annihilate such thatPs>0′((µ1, ω1), ..., (µN , ωN )) = 0 if µk = 0 for

somek (Equation (2.7)). Hierarchical consistency need not be shown for the intermediate

case where0 < µk ≤ δ for somek because such intermediate values of preference do

not occur in practice, as is discussed in Section 5.1. ThusP̂c defined as(Pc,Pω), i.e.,

(Ps≤0,Pω) and(Ps>0′ ,Pω), has been shown to be a valid hierarchical weighted aggrega-

tion operation for (preference, weight) pairs.

The hierarchical aggregation operation̂Pc can be successively applied, allowing mul-

tiple levels of problem decomposition or aggregation. Self-normalization (Axiom 2.18)

allows weights to be specified at arbitrary levels of aggregation and freely scaled. A set of

variables representing a single design problem can be decomposed into successively smaller

sub-problems based on the structure of the problem and the nature of the trade-offs between

variables. Importance weightings for each elemental attribute at the lowest level of the hi-

erarchy can be specified either relative to all other elemental attributes globally or relative
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Figure 2.2 Amerigon’s electric vehicle chassisc©Copyright 1996 CALSTART,
Inc., all rights reserved. Permission to use granted April 30, 1996.

to attributes within each sub-problem locally. Where weights are specified locally by sub-

problem, the aggregated weight representing the importance of the sub-problem must be

scaled relative to other sub-problems at the same level of aggregation. This is equivalent to

aggregating multiple design problems into a single super-problem: the importance of each

problem must be determined relative to the other problems at the same hierarchical level,

prior to aggregation. Weights need not be bounded by any specific limit, though it may

be convenient to normalize weights within a particular problem to sum to1, such that they

represent the importance of each attribute in the context of the problem as well as relative

to each other.
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2.7 Example: Design of an Electric Vehicle

This section demonstrates the modeling of a hierarchical design problem through an ex-

ample: the design of an electric vehicle (EV) based on a space frame. It is assumed that

the basic geometry of the frame has already been decided and that the design team is cur-

rently concerned with basic frame parameters and important choices in vehicle components

such as the propulsion system. Figure 2.2 shows a running chassis for an electric vehicle

developed by Amerigon Incorporated under the CALSTART business incubator program.

This actual working vehicle design is the basis for the example presented here, though the

vehicle used for the example is not intended to accurately represent Amerigon’s running

chassis. The purpose of the running chassis is to provide “a modular ‘common platform,’

or shared chassis, that can serve as the basis for a family of electric vehicle models for sev-

eral manufacturers. The running chassis is a fully functional EV without body or interior,

utilizing an aluminum space frame design for lighter weight and lower cost. [23]”

The hierarchical aggregation of individual design preferences is shown in Figure 2.3.

Individual design preferencesµd1(d1), ..., µdn (dn) are aggregated through a hierarchy of

weighted aggregation functions into the combined design preferenceµd(~d) (µd(~d) will be

formally defined in Chapter 3). The A pillars are on either side of the front windscreen, and

the B pillars separate the front and rear doors (Figure 2.2). The hierarchy for the frame of

the vehicle is incomplete: only the design variables for the B pillar are given. These design



28

variables are shown in Figure 2.4. Note thath, w, tweb, andtouter do not fully describe the

cross-section. Other variables that are not under active consideration (e.g., those indicated

but not labelled) do not need to be modelled as design variables.

Recall that design preferencesµd(di) represent the customer’s anticipated preferences

with respect to design considerations: the unquantified aspects of design performance

which are not represented by performance variables. Thus the first step is to determine

which aspects of performance are to be quantified as performance variables. For this exam-

ple the following performance variables are to be calculated:

• p1 vehicle range

• p2 vehicle cost

• p3 acceleration time from 0–60 mph

• p4 vehicle weight

• p5 frame stiffness in bending

• p6 frame stiffness in torsion

It is assumed that estimates for these quantities are available for any given design config-

uration. Rangep1 can be calculated given data on energy stored, motor and transmission

efficiency, aerodynamic drag, and rolling resistance.Cost p2 and weight p4 and can be

calculated using a spreadsheet or similar software, given the necessary weight and cost

data. 0–60 timep3 can be estimated from motor and transmission characteristics.Bend-

ing stiffnessp5 and torsional stiffnessp6 can be evaluated using a finite element model

(Section 4.2).

The design considerations that pertain to each design variable are indicated in Fig-

ure 2.3. The careful distinction between performance considerations (represented by func-

tional requirements on performance variables) and design considerations (represented by

design preferences on design variables) is an important contribution of this thesis. De-

sign considerations explicitly account for relevant aspects of design performance that are

otherwise not accounted for as performance considerations. Issues such as aesthetics and
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manufacturability are clearly relevant to design evaluations, yet they are not easily quanti-

fied. Design preferences embody these issues. In constructing the hierarchy to aggregate

design preference, it is important to understand which specific issues are being aggregated

at each step.

Although the B pillar design variablesh andw affect stiffness, cost, weight, range, and

acceleration, these considerations will ultimately be explicitly evaluated. They do not need

to be represented by design preference. The design considerations that remain are aesthetics

and packaging. B pillars that are too wide or too narrow are not attractive. B pillars that

are too deep reduce clearance inside the vehicle, yet a certain minimum depth and width

is required to attach the seat belt. Additionally, wide B pillars reduce the size of the door

opening. The thicknessestweb andtouter affect the difficulty of extruding the cross-section.

The internal web is necessary to maintain the shape of the cross-section when it is bent,

although a thick web is difficult to manufacture [11]. The values oftweb andtouter affect the

difficulty of extruding a uniform cross-section within tolerance [11]. Joints and attachments

to the B pillar lead to a minimum value fortouter.

The design considerations associated with the B pillar design variables are not natu-

rally compensating. Packaging constraints and aesthetics cannot significantly compensate

for manufacturability. Yet the trade-off is not purely non-compensating. Thus the level of

compensation specified isc = 0.2. The value ofc obtained in this manner is, at best, an esti-

mate. Indeed, the exact parameterization ofP̂c has not yet been determined. Nevertheless,

the valuec = 0.2 approximately represents the informally defined degree of compensa-

tion that is appropriate for the aggregation of the design considerations associated with the

B pillar design variables. More precise methods of determiningc will be introduced in

Section 5.2.

For each aggregation operation at a particular hierarchical level in Figure 2.3, the lo-

cally normalized weights assigned to the aggregated branches are indicated. Global weights

normalized for the entire design problem are printed in italics below each design variable.

The global weights were obtained by multiplying the local weights along the branches con-

necting each design variable to the top of the hierarchy. Because it is natural to compare

the relative importance of closely related attributes, local weights were specified first. The
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global weights corresponding to the local weights specified were then examined and adjust-

ments were made to both global and local weights in order to better represent the perceived

relative importance of the design variables.

The types of energy storage considered are limited to conventional nickel-cadmium and

lead-acid batteries, and an advanced lead-acid battery that uses a lead wire grid extruded

onto a fiberglass core. The lead wire-acid battery, developed by Electrosource Incorporated,

of Austin, Texas, has advantages in weight and durability and with an estimated price of

$3,000 per vehicle it is among the least expensive new energy storage options available for

electric vehicles [42]. However, there is a degree of risk involved in using a new battery

technology that is as yet not in widespread usage. A more important design consideration is

the time required to recharge the batteries. Conventional nickel-cadmium batteries can be

partially recharged relatively quickly in comparison to conventional lead-acid batteries. The

Peugeot 106 and Citro¨en AX, both produced by PSA Peugeot Citro¨en, use nickel-cadmium

batteries that can be fast-charged in 10 minutes to extend the vehicle’s range by 20 to 30

kilometers [42].

The total energy stored,E, is essentially the number of batteries. As the number of

batteries becomes large, the quantity of potentially dangerous acid in a lead-acid battery,

for example, becomes a significant safety concern. Battery mass also affects safety in

a collision. Additionally, there is an upper limit to the number of batteries that can be

physically packed into an electric vehicle, independent of their weight.

A crucial component of a practical electric vehicle is an energy management system.

The total energy stored in an electric vehicle is limited: range is dependent on how effi-

ciently that energy is used. Where lead-acid batteries are the only means of energy storage,

the maximum power that can be drawn from the batteries is also a critical limitation. An

especially important choice is whether or not to use regenerative braking in order to re-

cover some of the energy otherwise dissipated in decelerating the vehicle. Assuming that

weight, range, and cost are already accounted for as performance variables, the remaining

considerations are the additional complexity of such a system, and in particular its impact

on reliability.

The design considerations governing the choice of motor used to propel the vehicle are
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the availability of types and sizes of motor and packaging constraints that limit the over-

all dimensions of the motor. These are relatively unimportant issues as is indicated by a

global importance of0.04. Note that this does not imply that the choice of motor is a rela-

tively unimportant decision, nor that the motor is a relatively unimportant component in the

vehicle, but merely that availability and packaging constraints for the motor are relatively

unimportant compared to other design considerations.

Ironically, the efficiency of an electric vehicle creates a problem that does not exist for

combustion-powered vehicles: how to heat the interior when there is no convenient (and

free) source of waste heat. The problem is exacerbated by limited energy storage. Thus the

passenger heating and cooling system in an electric vehicle is a significant and integral part

of the design. The selection of the capacity of the climate control system directly impacts

range, cost, and comfort. Of these, comfort is not modeled as a performance variable. Its

direct importance to the customer is reflected in a global weight is0.2. The correspond-

ing design preferenceµpeak capacityis more heavily weighted (ωpeak capacity= 0.2) than any

other individual design preference: the design considerationcomfortassociated withpeak

capacityis the most important of the design considerations in Figure 2.3.

Critical aspects of design performance are typically quantified. Thus they are mod-

eled as performance variables and the customer’s preferences on them are represented as

functional requirements. Therefore, the remaining aspects of design performance that must

be expressed as design preferences on design variables are typically of lesser importance.

Many design considerations,e.g., manufacturability, are only of indirect interest to the cus-

tomer. Thus the extent to which the determination of the design preference hierarchy, the

relative weights, and the aggregation functions is informal and approximate, is entirely

appropriate. The degree of compensationc for each aggregation operation need only be de-

termined to the nearest 0.1, at most: for many problems the nearest 0.2 will suffice. Perhaps

a more valuable result of constructing the design preference hierarchy is the understanding

gained through identifying design considerations, their relative importance, and their as-

sociated design variables, and formalizing the hierarchical relationships between design

considerations. A similar benefit can be expected from constructing the functional require-

ment hierarchy. The functional requirement hierarchy is more easily constructed because
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performance considerations are relatively specific and well-defined. It has been demon-

strated that the construction of these models is not only feasible and informative, but in

necessitating the careful identification of the specific considerations corresponding to each

variable and their relative importance, the process of constructing the model is itself helpful

in understanding the structure of preferences that characterizes the design problem.

2.8 Related Work

Decision-making methods that address uncertainty, in a broad sense, are not new. The

method of imprecision presented in this thesis may be distinguished from these other meth-

ods in three principal directions:

• the type of uncertainty modeled,

• the means by which uncertainty is modeled,

• the functions used to aggregate uncertainty.

Probability

Probability theory quantifies uncertainty due to random variation. Probability methods fo-

cus on observing a process in order to characterize its behavior and hence predict the like-

lihood of various outcomes. Probabilistic uncertainty arises from a stochastic process for

which the best predictor of the final outcome is statistical analysis of previous behavior.

This is in contrast to imprecision in design, which arises because the designer has yet to

make decisions that will more precisely determine the design. This decision-making pro-

cess is clearly not random and analysis of previous behavior is of limited value. Thus prob-

ability methods are not well-suited to modeling design imprecision. Probability methods

are, however, well-suited to dealing with stochastic uncertainty in manufacturing processes,

material properties, loading, reliability,etc. Probabilistic design [22, 56] seeks to support

design decisions through the analysis of these stochastic variations.

Taguchi’s method [7, 50, 57], which is widely used in industry, views manufacturing

variations as undesirable stochastic noise. The method has three key aspects [50]:
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1. The loss in producing a product that deviates from target values is assumed to be

quadratic.

2. Selected experiment design techniques are used to efficiently characterize the behav-

ior of the manufacturing process relative to controlled inputs.

3. The goal is to achieve robustness both in terms of the insensitivity of product per-

formance to uncontrolled variation as well as the consistency of the manufacturing

process in delivering products to specification.

Taguchi’s method is a philosophy to understand and minimize the cost of stochastic process

variations and, as such, has been shown to be effective. Design imprecision, however, is

not explicitly modeled in the Taguchi approach.

Utility Theory

Utility theory seeks to aid decision-making in the presence of uncertainty. The type of

uncertainty modeled is uncertainty due to decisions yet to be made,i.e., imprecision. Utility

theory is based on economics and its central assumption is that each aspect of a decision

can be assigned a function representing utility. Although utility is similar to preference as

used in the method of imprecision (von Neumann and Morgenstern [61] use “satisfaction”

and “preference” as similes for utility), there are three important differences:

1. Utility functions are specified only on objectives: where there are multiple courses

of action, for example, the expected utility of each action is assessed on each ob-

jective variable [25]. The method of imprecision admits a second possibility: that

preferences may also be specified on design variables, based on anticipated design

performance. Proxy attributes in utility theory [25] are equivalent to performance

variables and not design variables because they still relate directly to objectives, and

most significantly the mapping from proxy attributes to objectives is not explicitly

evaluated.

2. Utility is based on a common monetary commodity:



34

We shall therefore assume that the aim of all participants in the economic

system, consumers as well as entrepreneurs, is money, or equivalently

a single monetary commodity. This is supposedly to be unrestrictedly

divisible and substitutable, freely transferable and identical, even in the

quantitative sense, with whatever “satisfaction” or “utility” is desired by

each participant. [61] (p8)

While this is reasonable in the context of economic systems, it is not especially suited

to design. Preferences on design attributes are not necessarily identical and substi-

tutable commodities. Preferences on the stresses in various components of an au-

tomobile suspension system are not identical to preferences on various measures of

musical fidelity in the sound system. The issue is not difference in importance, but

difference in character: different types of attributes require different trade-offs. A

uniform monetary commodity is always traded as a commodity. Moreover, every

objective is assumed to have a price.

3. A consequence of the equivalence between utility and a monetary commodity is that

utility is relative:

. . . utility is a number up to a linear transformation.

We do not undertake to fix an absolute zero and an absolute unit of util-

ity. [61] (p25)

Preference is absolute: a preference of zero is defined as unacceptable and a prefer-

ence of one is defined as ideal. The absolute definition of zero preference is essential

to design. The annihilation axiom for rational design decision-making relies on the

absolute definition of zero preference. Failure to meet a minimum requirement in

one aspect of the design must render the entire design unacceptable. Because there

is no absolute zero of utility, there is no notion of absolute unacceptability in utility

theory: a sufficiently high utility in another attribute can always compensate. This

does not realistically represent design decisions.
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Utilities are commonly aggregated with the arithmetic mean, which is a function in the

family of weighted means:

Ps=1((µ1, ω1), ..., (µN , ωN )) =
1
N

N∑
i=1

ωiµi(2.15)

As discussed in Section 2.5, functionsPs>0 do not satisfy annihilation and hence are not

design-appropriate. In general, aggregation functions in utility theory are not required to

satisfy annihilation because utility is relative and zero utility does not represent any absolute

notion of null preference or unacceptability.

Matrix Methods

Design imprecision during the earliest stages of the design process is manifested as a multi-

plicity of alternative concepts. Morphological matrices [48] classify concepts by function,

solution variant, working principle, type of motion,etc., and in doing so, facilitate the gen-

eration of new concepts. Concepts are typically not sufficiently refined for quantitative

analysis. Concept selection matrices [3, 48, 52] rank alternatives against evaluation crite-

ria. Rankings are typically informally estimated against an existing design or some other

datum. The weighted sum of rankings identifies promising alternatives. Pugh [52] also

describes an alternative preliminary ranking scheme that has only three ratings: “+” (bet-

ter than datum), “−” (worse than datum), and “S” (same as datum). These ratings are not

summed algebraically, as in other methods, but rather serve to indicate the strengths and

weaknesses of each alternative. It is in this respect that concept selection charts are most

effective. They are not intended to be formal analyses. The summation of numeric rankings

does not accurately reflect how criteria should be aggregated.

The analytic hierarchy process, or AHP [53], is a systematic procedure for determining

the relationships between elements in a hierarchy of progressively more specific aspects

of a problem. The axioms of the AHP do not include strong assumptions of rationality in

decision-making [53]. The AHP combines attributes using a weighted sum which does not

satisfy annihilation.
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Optimization

Optimization does not expressly model uncertainty. The purpose of design optimization

is to algorithmically search for the “best” design relative to a single overall criterion. Pa-

palambros and Wilde [49] identify four steps in the design optimization approach:

1. The selection of a set of variables to describe the design alternatives.

2. The selection of an objective (criterion), expressed in terms of the design variables,

which we seek to minimize or maximize.

3. The determination of a set of constraints, expressed in terms of design variables,

which must be satisfied by any acceptable design.

4. The determination of a set of values for the design variables, which minimize (or

maximize) the objective, while satisfying all constraints.

In practice, steps 2 and 4 pose the greatest difficulty. It is not always possible to represent

all relevant design requirements in a single objective. “The importance of optimization lies

not in trying to find out all about a system, but in finding out, with the least possible effort,

the best way to adjust the system. [2]” Ultimately, optimization does not seek to explore the

design problem, but is interested only in obtaining the single “best” solution. This directed,

point-based approach leads to algorithmic efficiency but is subject to two of French’s three

criticisms:

• Are the algorithms and the criterion used to optimize the design an acceptable and

rational emulation of the decision-maker?

• Is the process of design optimization itself informative, and does it guide the evolu-

tion of the decision-maker’s beliefs and preferences?

Engineers at one major U.S. automobile manufacturer tend to view optimization as a black

box design tool [12]. Given constraints and a set of design variables, the optimization

software simply searches for the design that is (locally) optimal with respect to a given

objective,e.g., weight or stiffness. The software does not facilitate understanding of the

design space other than at the single optimal design point. Moreover, the real problem has
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multiple objectives. Thus, optimization proceeds by iteratively cycling through several ob-

jectives. Occasionally engineers are tempted to “tweak” the final design in order to trade-off

one objective for another, but this leads to designs that are non-optimal in some unexpected

direction [12]. The problems of local optima, multiple objectives, and to a lesser extent

lack of participation in the optimization process have been addressed in more advanced op-

timization methods, notably genetic algorithms [20] and various multi-objective optimiza-

tion formulations [5, 19, 58]. Dlesk and Liebman [14] describe a multi-objective design

methodology that also allows for uncertainty via “hedging,” a more systematic alternative

to tweaking, and sensitivity analysis about the design point.

Optimization is fundamentally a point-based approach. Moreover, it emphasizes objec-

tives as opposed to preferences on objectives, and thus implicitly assumes that preference

is a simple, often monotonic function on each objective. Additionally, constraints are typ-

ically assumed to be precise. Yet these assumptions allow optimization algorithms to be

computationally efficient and readily implemented.

Set-based Methods

Wardet al.[62, 63], in a remarkable case study of Toyota’s design and development process,

characterize a new approach that they refer to as “set-based concurrent engineering.”

Toyota designers think abouts sets of design alternatives, rather than pursuing

one alternative iteratively. They gradually narrow the sets until they come to a

final solution. [63] (p43)

To illustrate the power of set-based information relative to point-based information, Ward

et al. [63] use a simple example problem: scheduling a meeting. A conventional point-by-

point approach might begin with the meeting organizer picking a time and date. As other

participants are contacted, the original time may turn out to be unsatisfactory: a new time is

picked but now the organizer must go back to check with all the people who were contacted

previously. The new time may be unsatisfactory for them, requiring yet another change.

For large, busy groups, this process quickly becomes time-consuming and unwieldy. There

are two common strategies for shortening the search while retaining the point-by-point ap-

proach [63]. First, the group can meet briefly to decide when to have the meeting. This
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accelerates communication at the cost of the participants’ time. For automobile develop-

ment, this corresponds to collocating engineers that are working on the same project and

requiring them to meet more often. Second, one or more powerful members of the group

can dictate a time for the meeting, which is likely to produce a less than optimal solution,

albeit quickly.

A third, set-based approach to planning a meeting requires all paricipants to

submit the times that they are available, perhaps with preferences. A conve-

nient time can quickly be found by taking the intersection of all sets of available

times, a process now often automated. [63] (p44)

Wardet al. [63] observed five potential advantages to the set-based approach to design at

Toyota:

1. “Set-based concurrent engineering enables reliable, efficient communication.[63]”

In a conventional, point-based approach, every design change can invalidate all pre-

vious decisions. Moreover, changes will not necessarily converge. Conversely, in a

set-based approach, engineers communicate information that delineates the full set of

possible designs. As the design process proceeds, this set is narrowed, supplement-

ing without invalidating previous information. Set-based communication at Toyota

appears to have several consequences. First, it eliminates work that is subsequently

invalidated. “Toyota’s body designers waste little time on detailed designs that cannot

be manufactured because the manufacturing personnel can precisely define the set of

bodies that are manufacturable. . . . [63]” Second, it reduces the number and length

of meetings. “Toyota’s engineers and suppliers can work relatively independently,

because each meeting communicates information about an entire set of designs. [63]”

Toyota also achieves a high level of concurrency in its engineering process without

collocating or dedicating its development teams. Third, set-based communication

eliminates a major incentive to delay work. With a point-based approach, engineers

downstream in the process may choose to delay making decisions because the design

is subject to change. Toyota’s suppliers always know the amount of imprecision in

their specifications and are therefore able to commit themselves accordingly. Finally,
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set-based communication can increase trust in working relationships. Informing a

supplier about the set of possible changes instead of simply providing the minimum

information encourages trust.

2. “Set-based concurrent engineering allows for greater parallelism in the process, with

more effective, early use of subteams.[63]” In a set-based approach, downstream pro-

cesses can become involved as soon as the set of possible designs is sufficiently re-

fined. Manufacturing innovation that applies to a broad set of products may influence

product design.

3. “Set-based concurrent engineering bases the most critical, early decisions on data.[63]”

The earliest design decisions have the greatest impact on the ultimate quality and

cost [9, 10], but these decisions are made with the least data [62], and moreover, data

that is the least precise. Set-based methods allow Toyota engineers to explore the

space of possible designs before making important decisions.

4. “The set-based process promotes institutional learning.Designers are notoriously

resistant to documenting their work, partly because they sense that documentation

is generally useless. [63]” Documenting a point-based design process provides di-

rections from one specific starting point through one particular path, to the current,

specific design. These directions are only useful to revisit the particular designs ex-

plored. At Toyota, team members systematically explore larger regions of the design

space. Lessons-learned books record the manfacturability of various body designs.

In this way, designers have available to them a clear and up-to-date map of the space

of manufacturable body designs, without even talking to a manufacturing engineer.

5. “Set-based concurrent engineering allows for a search of globally optimal designs.[63]”

“Rapid inch-up” innovation can only find “local optima”: the best possible design

based on the current fundamental concept. Set-based concurrent engineering can

explore many different concepts and may potentially find better solutions based on

radically different concepts.

These five advantages are a compelling motivation for all set-based methods, including the

method of imprecision.
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In formalizing their own set-based methodology, Ward and Seering [64, 65] have devel-

oped a theory to propagate intervals with associated labels such asLimits andOperating-

Region. In relation to their work, the method of imprecision has focused not on the char-

acterization of the nature of each interval (i.e., its “label”), but rather on the representation

of degrees of preference. In practice, the method of imprecision is manifestly set- and even

interval-based (see Chapters 3 and 5). Indeed, the methods described in this thesis are well

described by the third, set-based approach to planning a meeting quoted above. Fuzzy sets

are, after all, a generalization of ordinary crisp sets.

Many researchers have used fuzzy sets to represent imprecision in decision-making out-

side of engineering design [6, 16, 24, 27, 40, 41, 72]. Most of these formulations are based

on fuzzy “and” and “or” operators and are directed at modeling linguistic uncertainty and

fuzzy logic. Although the design appropriatePmin andPΠ aggregation functions are used

to combine fuzzy sets, two classes of functions that do not in general satisfy the annihilation

and idempotency axioms are commonly used for fuzzy decision-making:t-norms[36, 16]

and t-conorms. T-norms are bounded above bymin. T-conorms are bounded below by

max.

Zimmerman and Sebastian [73, 74] and M¨uller and Thärigen [39] have applied fuzzy

sets to engineering design. Given the basic equivalence of preferences as defined in the

method of imprecision and membership as defined in fuzzy set theory, their methods are

similar to those described in this thesis. The fundamental choice of fuzzy sets to model

design imprecision yields the same mathematical entities to quantify and manipulate im-

precision. The method of imprecision is specifically directed at design decision-making in

particular, and thus the more intuitive notion of preference replaces membership. The ax-

ioms that define design-appropriate aggregation function are also specific to design. These

are a few of the distinctions between the two approaches that have arisen because of the

relatively specific focus of the method of imprecision on engineering design. The work of

Zimmerman and Sebastian [73, 74] has mainly been applied to configuration design.

A significant distinction of the method of imprecision is the inclusion of design prefer-

ences. The explicit representation of the customer’s indirect preferences anticipated by the

designer is unique to the method. Design preferences, however, must be mapped from the
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DVS to the PVS, which is a non-trivial additional step.

2.9 Conclusions

The method of imprecision models the design problem in terms of two separate spaces: the

design variable space(DVS) is the set of all design alternatives under active consideration,

and theperformance variable space(PVS) is the set of all quantified performances that are

achievable by the designs in the DVS. Design variablesd1, ..., dn distinguish design alter-

natives that the designer considers to be distinct for the purpose of analysis. Other attributes

of the design either are not under active consideration or cannot be directly specified. The

set of design variables forms ann vector,~d, that distinguishes a particular design alternative

in the DVS. Performance variablesp1, ..., pq quantify design performance for each design:

pj = fj(~d). The mappingsf1, ..., fq can by any calculation or procedure to evaluate the

performance of a design, but a performance attribute must be explicitly quantified to be a

performance variable. The set of performance variables forms aq vector,~p = ~f(~d), that

specifies the quantified performances of a design~d.

Imprecision is represented through quantifying the customer’s direct and indirect pref-

erences on design and performance variables:

• Functional requirementsµp1, ..., µpq quantify the customer’s direct preference on per-

formance variables based onperformance considerations: the quantified aspects of

design performance represented by performance variables.

• Design preferencesµd1 , ..., µdn quantify the customer’s anticipated preference on

design variables based ondesign considerations: the unquantified aspects of design

performance not represented by performance variables.

The precise differentiation between design and performance variables, between design pref-

erences and functional requirements, and between design and performance considerations,

is a key contribution of this thesis.

The individual functional requirements and design preferences are aggregated into a sin-

gle overall preferenceµo. High overall preference identifies preferred and hence promising



42

designs and performances. Five axioms for rational design decision-making were presented

in Section 2.3: commutativity, monotonicity, continuity, annihilation, and idempotency. Of

these five, annihilation is specific to design. Annihilation is necessary so that a design

that is unacceptable in some aspect because it fails to meet a minimum requirement must

also be judged to be unacceptable overall. Including importance weightings necessitates a

redefinition of these axioms and the addition of a sixth axiom, self-normalization, which

allows weights to be freely scaled by any strictly positive constantλ. This property is

also useful where preferences are aggregated hierarchically. Aggregation functions that

satisfy the axioms for rational design decision-making are termeddesign-appropriate. In

Section 2.5, a family of hierarchically consistent, design appropriate aggregation functions

were defined using the weighted root-mean-power family of functions. This family of func-

tions Pc, parameterized inc, allow the degree of compensation to be continuously varied

from non-compensating (Pc=0 = Pmin) through partially compensating, fully compensat-

ing (Pc=1 = PΠ), and supercompensating, to maximally compensating (Pc=2 = Pmax′).

This family of aggregation functions, which represent the model decision-maker in the

method of imprecision, allow a broad range of degrees of compensation and satisfy postu-

lated axioms for rational design decision-making. They permit attributes to be weighted in

importance and they support hierarchical aggregation. Few of the decision-making methods

reviewed in Section 2.8 can match all of these claims (few methods have been specifically

developed for design decision-making). Thus it is suggested that, provided the axioms

of design-appropriateness adequately reflect the decision-maker’s notion of rationality, the

method of imprecision can indeed allow the decision-maker to define an aggregation hier-

archy that acceptably models how the decision-maker might actually trade-off preferences.

The electric vehicle example in Section 2.7 demonstrated the modeling of a design

problem, and in particular the process of identifying design variables, performance vari-

ables, and design considerations and constructing the design preference aggregation hierar-

chy. The elucidation of this process, in particular the construction of the design preference

hierarchy, is the second key contribution of this thesis. The modeling of performance con-

siderations as performance variables is not new and its suitability is not in debate. Whether

preferences suitably model imprecision with respect to performance variables is, however,
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as yet unproven: this issue will be addressed in Chapter 5. But the two key issues here are

first, whether the chosen means of representing and aggregating the customer’s anticipated

preferences on design variables is a suitable or even meaningful model of the design prob-

lem, and second, whether the suggested process for constructing the model is both feasible

and informative.

The specific issues discussed as design considerations, such as aesthetics and manu-

facturability, are clearly relevant to design, yet they are difficult to include in any formal

methodology. The work presented in this thesis not only allows the representation of these

“soft” issues, but introduces a clearly defined formal structure for quantifying their conse-

quences. Any relevant issue that can be related to a design variable can be modeled in this

way. That design issues can be formed into a hierarchy with importance weightings is not

controversial. The innovation of separating design considerations from performance con-

siderations may at first make little sense, but since performance considerations will be ex-

plicitly evaluated and their consequences calculated, only the design considerations remain

to be quantified on the design variables. Using the designer’s experience and judgement

to project the customer’s preferences back onto the design variables is already common

practice. Indeed, a primary difficulty in implementing the method will be to selectively

turn off the designer’s automatic mapping of all of the customer’s preferences onto design

variables. Representing design considerations as the customer’s anticipated preferences on

design variables is therefore a suitable model: it is not inconsistent with how a designer

thinks about design. Moreover, such a structure is also meaningful to the designer: it is

readily interpreted.

That the process of identifying design considerations and constructing the design pref-

erence aggregation hierarchy is feasible has been demonstrated for one specific example.

It is anticipated that this procedure will be feasible for any design problem for which the

designer has a sufficient understanding. However, the author is clearly not an expert on

electric vehicle design. Yet the process of enumerating design considerations, explicitly re-

lating design considerations to design variables, constructing a hierarchy, determining rel-

ative importance and degree of compensation in aggregation, and examining the resulting

model, forced a careful analysis of how the design variables impact design considerations,
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and as a result many important issues were clarified. This critical analysis of design consid-

erations separately and in relation to design variables and an aggregation hierarchy is itself

a valuable exercise. Thus it is suggested that the process of constructing the model is not

only feasible and informative, but also requires the designer to more clearly distinguish and

explicitly quantify the beliefs and preferences that are to be modeled.
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Chapter 3

Calculating Imprecision

“Now,” said Rabbit, “this is a Search, and I’ve Organized it—”

“Done what to it?” said Pooh.

“Organized it. Which means — well, it’s what you do to a Search, when you

don’t all look in the same place at once. . . .”

A. A. Milne(1882–1956), “The House at Pooh Corner”

Chapter 2 described how individual preferences can be hierarchically aggregated into

an overall preferenceµo. In implementing the method of imprecision, a key difficulty is

that design preferences are specified on the DVS and functional requirements are specified

on the PVS.~f provides a forward mapping from the DVS to the PVS, but the backwards

mapping from the PVS to the DVS is typically not available. Hence design preferences

are first mapped onto the PVS. The mapped design preferences are then traded-off against

functional requirements to obtainµo(~p), the overall preference function on the PVS.µo(~p)

represents the combined preferences of the designer and the customer, expressed in terms

of design performance~p. In order to obtainµo(~d), the overall preference on the DVS,

functional requirements must be mapped back onto the DVS and traded-off against design

preferences.µo(~d) identifies design configurations that are promising in terms of the com-

bined preferences of the designer and the customer.

This chapter describes computational methods that have been developed in order to

perform the calculations described above. The practical difficulties of mapping preferences
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from the DVS to the PVS while achieving efficiency in function evaluations are discussed

in Section 3.3. The methods developed utilize optimization (Section 3.2) and design of

experiments (Section 3.4). Many of these methods have been implemented in a computer

program, the Imprecise Design Tool, which will be described in Chapter 4.

3.1 The Level Interval Algorithm

After specifying design preferencesµd1(d1), ..., µdn(dn) and functional requirementsµp1(p1), ..., µpq(pq),

and identifying the appropriate hierarchy of trade-off strategies, the individualµdi
(di) are

aggregated to obtainµd(~d), the combined design preference on the DVS.µd(~d) is then

mapped onto the PVS, using the extension principle [71]:

µd(~p) = sup{µd(~d) | ~p = ~f(~d)}(3.1)

wheresup over the null set is defined to be zero.µd(~d) is the combined design preference

on the DVS, as distinct fromµd(~p), the combined design preference on the PVS.µd(~p) is

obtained by mappingµd(~d) onto the PVS.

Individual functional requirementsµp1, ..., µpq are aggregated to obtainµp(~p), the com-

bined functional requirement on the PVS. The overall preference on the PVS is the aggre-

gation ofµd(~p) andµp(~p):

µo(~p) = P (µd(~p), µp(~p)) .(3.2)

µo(~p) represents the combined preferences of the designer and the customer, expressed in

terms of design performance.

In order to obtainµo(~d), the overall preference on the DVS, the combined functional

requirementµp(~p) is mapped onto the DVS:

µp(~d) = µp(~p) = ~f(~d).(3.3)

Although µp(~d) is easily calculated using~f for any given design~d, determining how the

preference functionµp(~d) varies over sets of designs in the DVS is difficult without evalu-
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Figure 3.1 Discretized design preferenceµd1 .

ating ~f many times, especially because the inverse of~f is typically not available.

The first problem to be addressed is how to map design preference from the DVS to the

PVS. Previously,µd(~p) has been calculated using theLevel Interval Algorithm, orLIA [69],

first proposed by Dong and Wong [15] as the “Fuzzy Weighted Average” algorithm and also

called the “Vertex Method.” The LIA definesM levels of preferenceα1, ..., αM . The indi-

vidual design preference functionsµdi
(di) are discretized intoα-cut intervals[di

αk
min, di

αk
max]

at these preference levels:

[di
αk
min, di

αk
max] = {µdi

(di) ≥ αk} k = 1, ...,M.(3.4)

α-cut intervals for the design preferenceµd1 are shown in Figure 3.1. These individualα-

cut intervals are then combined to obtainα-cutsDd
α1

, ...,Dd
αM

in the DVS which represent

the combined design preferenceµd(~d).

Dd
αk

= {~d ∈ DVS | µd(~d) ≥ αk} k = 1, ...,M.(3.5)

The LIA assumes that design preferences will be aggregated with a non-compensating
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Figure 3.2 The Level Interval Algorithm.

trade-off and thus combines the individualα-cuts by using the cartesian product:

Dd
αk

= [d1
αk
min, d1

αk
max] × . . . × [dn

αk
min, dn

αk
max] k = 1, ...,M.(3.6)

At the heart of the LIA is an enumerative procedure to map the combined design preference

α–cutDd
αk

onto individual intervals[pj
αk
min, pj

αk
max] in eachYj :

[pj
αk
min, pj

αk
max] = {pj(~d) ∈ Yj | µd(~d) ≥ αk} k = 1, ...,M.(3.7)

For eachαk, the LIA evaluatespj = fj(~d) for the 2n permutations ofα-cut end points

which correspond to the corners of ann-cube defined byDd
αk

(there aren design variables

andM α-cuts). Figure 3.2 illustrates howα-cutsDd
αk

in two design variablesd1 andd2 are

mapped onto the interval[pj
αk
min, pj

αk
max]. fj is evaluated at the2n = 4 corner points of each

Dd
αk

rectangle. It is assumed thatpj
αk
min andpj

αk
max will occur at these corner points, and

not insideDd
αk

. Thus the minimum and maximumpj among the four corner points defines

the interval[pj
αk
min, pj

αk
max]. This is not true in general: the mappingfj : DVS → Yj and

the combination functionP must satisfy certain conditions for the LIA to be exact [46]. In

practice, these conditions require thatfj be monotonic: a severe restriction.
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3.2 Optimization

The key limitation of the LIA, that it requires monotonicity, stems from the assumption that

the extreme values offj will occur at the corner points of theDd
αk

n-cube. The algorithm

may thus be improved by relaxing this assumption [34]. The problem, restated, is to find:

pj
αk
min = min{pj = fj(~d) | ~d ∈ Dd

αk
}

pj
αk
max = max{pj = fj(~d) | ~d ∈ Dd

αk
}.(3.8)

Finding extrema within a subset of the DVS is a constrained optimization problem.

In choosing an optimization technique, a trade-off must be made between computa-

tional cost and robustness (i.e., the ability to find the correct global extremum for various

starting conditions). Traditional calculus-based optimization methods converge in relatively

few function evaluations but seek only local minima. Randomized search methods such

as genetic algorithms offer greater robustness [20] but require more function evaluations.

Where function evaluations are relatively expensive, as is common in engineering design,

traditional optimization methods are a pragmatic solution.

The computational implementation described in this thesis uses Powell’s method, a

calculus-based optimization algorithm that begins as a one at a time search. After each

iteration a heuristic determines whether to replace the direction of maximum decrease with

the net direction moved during the last iteration. This allows minimization down valleys

while avoiding linear dependence in the set of search directions [2]. Although optimization

algorithms usually assume that variables are continuous, optimization can also be applied

to discrete and mixed-discrete problems. In the aircraft engine design problem presented in

Section 4.1, for example, all eight design variables are discrete.

An important feature for a practical computational tool is a means to trade-off the num-

ber of function evaluations against accuracy and reliability. Such an adjustment enables the

designer to use the same program to obtain quick estimates as well as precise evaluations.

This is implemented as a user-specified fractional precision that defines termination criteria

for the optimization algorithm.

Suppose that it is necessary to incur the minimum number of function evaluations. A
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fractional precision of 1 would be specified, creating automatically satisfied termination

criteria, and the optimization would proceed through exactly one iteration of a one at a

time search using the maximum step size. The algorithm begins at one corner of the search

spaceDd
αk

, and checks corners in each of then directions given byd1, ..., dn, moving to

the minimum each time. It expendsn + 1 function evaluations to find each end point, and

therefore2n + 2 perα-cut, as compared to2n perα-cut for the LIA. This is a substantial

improvement, but theα-cut interval obtained is only correct iffj is monotonic: none of the

interior points of theDd
αk

n-cube are evaluated. Minimizing function evaluations in this

way carries the cost of implicitly assuming monotonicity.

If fj is known to be monotonic, this information can be used to further reduce the num-

ber of function evaluations. The first pass of the optimization algorithm identifies whether

fj increases or decreases in eachdi. Subsequent extrema can then be directly evaluated,

without the need for searching. Hence wherefj is monotonic,n + 2 function evaluations

are required for the firstα-cut and2 for each subsequentα-cut.

3.3 Mapping Design Imprecision

In implementing the method of imprecision, a key step is mapping design preferenceµd

from the n-dimensional DVS to theq-dimensional PVS. If the individual design pref-

erencesµd1 , ..., µdn are to be combined with a non-compensating aggregation function

Pmin, the combined design preferenceα-cuts Dd
α1

, ...,Dd
αM

are given by the cartesian

product of the individual design preferenceα-cuts [di
αk
min, di

αk
max], as in the LIA. The re-

sultantDd
α1

, ...,Dd
αM

sets, which aren-cubes in the DVS, precisely describe the aggre-

gation of individual preference intervals. But for aggregation functions other thanPmin,

theDd
α1

, ...,Dd
αM

n-cubes do not fully describe the combined design preferenceµd(~d). A

two-dimensional example will illustrate the correct geometry ofµd(~d).

Figure 3.3 shows design preference intervals[di
αk
min, di

αk
max] at µd = α1, α2, α3 for two

design variablesd1 andd2. Recall that each interval[di
αk
min, di

αk
max] defines the range of

values fordi over which the design preferenceµdi
is at leastαk. The combined design

preferenceµd obtained by aggregating these two discretized design preferences using an
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arbitrary aggregation functionP is shown (from above) in Figure 3.4. Three-dimensional

views ofµd for Pmin andPΠ are depicted in Figures 3.5 and 3.6. Consider the center row,

for which d2
α3
min ≤ d2 ≤ d2

α3
max and thereforeµd2 = α3 (α3 is the highest preference).

Whered1
α1
min ≤ d1 ≤ d1

α2
min, µd1 ≥ α1 and thusµd ≥ P(α1, α3) = α1,3. Similarly,

whered1
α2
min ≤ d1 ≤ d1

α3
min, µd1 ≥ α2 andµd ≥ P(α2, α3) = α2,3. Whered1

α3
min ≤

d1 ≤ d1
α3
max, µd1 = α3 but P(α3, α3) = α3 by idempotency, and thusµd = α3. Note

that monotonicity (Axiom 2.14) ensures thatα1,3 ≤ α2,3 ≤ α3, α1,2 ≤ α2 ≤ α2,3, and

α1 ≤ α1,2 ≤ α1,3. BecausePmin(α1, α2) = Pmin(α1, α3) = α1 andPmin(α2, α3) = α2,

the discretizedµd(d1, d2) for P = Pmin is a Mayan (i.e., rectangular, stepped) pyramid

with three levels:α1, α2, andα3 (Figure 3.5). Each level of the pyramid is a rectangular

α-cut Dd
αk

= [d1
αk
min, d1

αk
max] × [d2

αk
min, d2

αk
max]. Thusµd(d1, d2) is precisely described by

three suchα-cutsDd
α1

, Dd
α2

, andDd
α3

. For aggregation functions other thanPmin, α2,3 rises

aboveα2. The sides of the pyramid bulge outwards, although because of the discretization

of preference, this is manifested as an increase in preference levels along each side instead

of an outwards expansion (Figure 3.6). The rectangularα-cutsDd
α1

, Dd
α2

, andDd
α3

remain

valid as long as the steps of the pyramid do not overlap. In this example, the only possible

overlap is ifα1,3 ≥ α2. But to fully describeµd(d1, d2) for aggregation functions other

thanPmin, additional non-rectangular level sets must be defined forα1,2, α1,3, andα2,3.

Thus the basic LIA must be further modified to accommodate aggregation functions other

thanPmin. Additional, non-rectangular level sets must be defined to correctly represent the

aggregation of the discretized individual design preferencesµd1, ..., µdn into the combined

design preferenceµd(~d).

Consider the problem of mapping just the rectangularα-cuts Dd
αk

from the DVS to

the PVS. The methods developed below are easily extended to deal with non-rectangular,

intermediate level sets. EachDd
αk

maps onto anα-cutP d
αk

in the PVS via~f : DVS → PVS

(~p = ~f(~d)).

P d
αk

= {~p ∈ PVS | µd(~p) ≥ αk}.(3.9)

P d
αk

will in general be neither aq-cube, nor even defined by straight edges. But given
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the need to minimize the number of function evaluations and the preliminary nature of the

design information, the exact geometry ofP d
αk

need not be calculated: an approximation is

sufficient. Indeed, asq, the number of performance variables, increases beyond 2, there is

little reason to pursue more accurate results that may be difficult or impossible to interpret,

especially whereµd(~d) is described by multiplen-cubic and non-n-cubic level sets, as

discussed above.

A straightforward extension of the LIA to deal with multiple performance variables

would use aq-cube approximation toP d
αk

defined by the cartesian product of the individual

intervals[pj
αk
min, pj

αk
max]:

P d2
αk

= [p1
αk
min, p1

αk
max]×, . . . ,×[pq

αk
min, pq

αk
max].(3.10)

This approximation is accurate only for severely restricted~f . Indeed,~f can only scale the

n-cubeDd
αk

in the principalpj directions. There is also an implicit assumption that thepj ’s

are independent, so that extrema can be independently determined. For these reasonsP d2
αk

is an inadequate approximation.

A superior approach is to selectively approximate~f as some simple function~f ′ overDd
ε

(theα-cut at infinitesimalα = ε, where0 < ε � 1). From Equation 3.5,α-cuts with higher

preferenceα are subsets ofα-cuts with lowerα. ThusDd
ε contains allα-cuts with non-zero

α and includes all potentially acceptable (non-zero preference) design alternatives.Dd
αk

can then be directly mapped onto the PVS, using~f ′. A linear approximation is the obvious

first choice:

~f ′(~d) =


f ′
1(~d)
...

f ′
q(~d)

 = ~f(~dctr) + ~∆ + A[~d − ~dctr]

=


f1(~dctr)

...

fq(~dctr)

+


∆1
...

∆q

+


a11 ... a1n

...
...

aq1 ... aqn




d1 − dctr
1

...

dn − dctr
n

(3.11)

where~dctr is the center point ofDd
ε and∆j is the distance thatf ′

j is offset fromfj at ~dctr.
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Figure 3.7 Reducing the search space with linear regression.

The elementsaji of the matrixA are linear regression coefficients that suitably approximate

~f over the entire seach spaceDd
ε . Although a linear approximation is not the only choice,

higher order approximations introduce additional complexity, both in the shape of the level

sets mapped onto the PVS and in the computational algorithm, that is not clearly justified.

It is assumed that the cost of each function evaluation is not negligible and that gradient

information is not readily available. Where these assumptions do not hold, other approaches

may be applicable, such as continuation methods [26].

It is conjectured that if~f is not strongly non-linear, a linear approximation will be ade-

quate to sketchP d
αk

where the precise geometry is not required. During preliminary design,

approximate answers are sufficient. As the design is refined, the set of design alternatives

under consideration will be reduced in size. A linear approximation is likely be more ac-

curate over a smaller set of designs. The difficulty of interpreting an irregularP d
αk

set with

curved boundaries in more than two dimensions suggests that a higher order approximation

may be of limited value for problems with more than two performance variables. Yet it is

important to consider where onP d
αk

more accurate results might be desirable. Although the

detailed geometry ofP d
αk

need not be known precisely, certain points on its boundary will

be used to make design decisions, and these need to be determined with greater accuracy
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and reliability. The extremal points on the boundary ofP d
αk

in each of thepj directions fall

into this category. These points are determined by optimization in the design variables that

are not acceptably linear [32]. Acceptably linear variables are approximated by regression

equations, thus shrinking the search space for optimization by one dimension (Figure 3.7).

A linear approximation also provides a simple measure of the sensitivity of each per-

formance variable to changes in each design variable. This can be related to values ofαk

and normalized by the largest value separately for each performance variable to obtain a

relative measure of design sensitivity at discrete levels of preference.

Definition 3.1 The design sensitivityκαk
ji is the sensitivity ofpj to the variation indi de-

fined by theα-cut interval atα = αk, relative to the largest value ofκαk
ji for eachpj at the

lowestαk:

καk
ji =

aji(di
αk
max − di

αk
min)

max{|κα1
j1 |, ..., |κα1

jn |}(3.12)

whereα1 is the lowest value ofαk. Λ

The design sensitivityκαk
ji is distinct from theγ-level measure [67], which measures the

sensitivity of a performance variable to a design preference function exponentially weighted

about a given preferenceγ. καk
ji measures the sensitivity of a performance variable to a

design preference function specifically at a preferenceαk, normalized with respect to the

largest value ofκαk
ji ∀ k, i for eachpj.

For a particular performance variablepj, καk
ji identifies which design variables have

the greatest influence, and indicates the sign of the linear coefficient. By comparingκαk
ji

for different performance variables, appropriate design variables can be chosen in order to,

for example, reducep1 and increasep2 simultaneously. Design sensitivities summarize the

information contained in the linear regression coefficients.

A final benefit of constructing a linear approximation is that it provides a computation-

ally tractable means to map the combined functional requirement from the PVS onto the

DVS. The reverse mapping for~f is typically not available: given a performance~p, there

is no direct means of determining its pre-image{~d | ~p = ~f(~d)}. The linear approximation

~f ′, however, can be reversed, though typicallyn > q (there will be more design variables
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than performance variables) and thus the pre-image of a single performance~p will be a set

of points in the DVS. The pre-image{~d | ~p = ~f ′(~d)} can be found by methods such as

Gaussian elimination. The combined functional requirementα-cut in the PVS is defined

analogously to the combined design preferenceα-cut in the DVS:

P p
αk

= {~p ∈ PVS | µp(~p) ≥ αk} k = 1, ...,M.(3.13)

The combined functional requirement mapped onto the DVS isDp
αk :

Dp
αk

= {~d ∈ DVS | µp(~f(~d)) ≥ αk}.(3.14)

The pre-image ofP p
αk for ~f ′ approximatesDp

αk :

Dp′
αk

= {~d ∈ DVS | µp(~f ′(~d)) ≥ αk}.(3.15)

Obtaining a linear approximation~f ′ fulfills four purposes: it removes acceptably linear

design variables from the search space for optimization; it supplies a global approximation

to ~f overDd
ε for determining the geometry ofP d

αk
between extremal points; it enables the

calculation of design sensitivitiesκαk
ji ; and it provides a computationally tractable method

to map preferences from the PVS onto the DVS. The mapping ofDd
αk

onto the PVS does

not, however, depend entirely upon the accuracy of the linear approximation~f ′. The shape

of P d
αk

in the PVS is estimated by obtaining extremal points in eachpj via optimization

(facilitated by linear approximation), and then interpolating the bounding edges between

points using~f ′.

It is not expected that many performance variables will be well modeled by a linear

approximation, even within a limited region of the DVS. But the linear approximation~f ′

furnishes additional information about the shape ofP d
αk

away from extremal points that

would otherwise be unavailable. Without~f ′, the geometry ofP d
αk

would only be known

at extremal points.~f ′ is used to provide approximate information not to replace precise

information, but to replace a lack of information. Useful information aboutP d
αk

can still be

obtained even wheref1, ..., fq are all highly non-linear. Where~f is non-linear, the calcu-
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lated shape ofP d
αk

will be incorrect. But the extremal points obtained using optimization

do not depend upon~f being linear. Moreover, even if~f ′ is completely unacceptable be-

causef1, ..., fq are all strongly non-linear ind1, ..., dn, P d2
αk

(Equation (3.10)) defined by

the extremal values in eachpj provides a bounding set forP d
αk

.

Usuallyn ≥ q: there will be at least as many design variables as performance variables.

If n = q andA is full rank, ~f ′ maps then-cubeDd
αk

onto ann-parallelepiped in the PVS.

Otherwise,~f ′ projectsDd
αk

onto aq′-dimensional polyhedron whereq′ ≤ q < n. Thisq′-

dimensional polyhedron which isP d′
αk

is defined by the external surfaces of the projection

of Dd
αk

via A. SinceDd
αk

is ann-cube, the directions of the parallel edges ofP d′
αk

are given

by the columns ofA:


a11
...

aq1

 , . . . ,


a1n

...

aqn

 .(3.16)

Every bounding edge ofP d′
αk

corresponds to an edge onDd
αk

, though some of the edges of

Dd
αk

map to the interior ofP d′
αk

. As described above, optimization is used to more reliably

calculate extremal points in eachpj . Modifying P d′
αk

to match these points will distort the

geometry and edges may no longer be parallel. Additional accuracy may be obtained by

explicitly calculating the remaining corner points onP d′
αk

which correspond to corners of

then-cubeDd
αk

that are not extrema in anypj .

Example

Suppose that for a particular design problem, there aren = 4 design variables andq = 3

performance variables. The designer wishes to conduct a preliminary analysis to explore

how preferences on the design and performance variables intersect. Individual design pref-

erencesµd1 , µd2 , µd3 , µd4 are specified as intervals[di
αk
min, di

αk
max] at two preference levels:

α1 = ε, α2 = 1. An infinitesimal yet non-zero preferenceε indicates a barely acceptable

variable value. Theα-cut interval atα1 = ε identifies the largest acceptable interval of

values for the variable. Values outside this range have zero preference and are thus unac-

ceptable. Conversely, a preference of one indicates an ideal variable value. Theα-cut



59

p

p1

2

3

p

p

p

3

pmax

2

pmin

1

pmax

1
1

3

a

min

min

a
a

a

2
3

4

Figure 3.8 Approximatedα-cutP d′
ε on the PVS.
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interval atα2 = 1 identifies the ideal or target range of values for the variable. Specifying

only twoα-cuts is a minimal implementation that is limited to calculating the boundaries of

two sets: the set of acceptable designs and the set of ideal designs. Relatively few function

evaluations are required. This is consistent with a preliminary analysis. For this minimal

implementation, the distinction between aggregation functions is eliminated: at this level

of discretization, the design preference intervals lead to the samen-cubic combined design

preferenceα-cutsDd
ε andDd

1 regardless of the aggregation functions used (this will be dis-

cussed in Section 5.1). Thesen-cubicα-cuts fully describe the combined design preference

µd on the DVS.~f ′, the linear approximation to the mapping~f : DVS → PVS would be ob-

tained by evaluating a central composite design overDd
ε . Suppose that the linear regression

coefficients in the matrixA have been obtained in this way:

A =


1.1 −0.12 2 0.68

−0.1 1 0.24 2

1.1 0.88 −1.24 1

(3.17)

P d′
ε , the projection ofDd

ε onto the PVS viaA, is shown in Figure 3.8.P d′
ε is a convex

polyhedron that approximates the actualα-cut P d
ε . Four edges that correspond to the four

columns ofA are labeleda1, ..., a4. These directions are the principal directionsd1, ..., d4

mapped onto the PVS. The labeled corners are extrema inpj: these points are obtained by

optimization. The conventional optimization approach to this problem would be to search

for the optimalp1, p2, or p3, within a constrained search space such asDd
ε . Thus ifp1 is to

be maximized andp2 andp3 are to be minimized, the information provided by optimization

would be limited to three of the points in Figure 3.8 labeled maxp1, min p2, and minp3.

Instead, the method of imprecision uses optimization to find both extrema in eachpj and

then constructs an approximation to the entire setP d
ε using the linear approximation~f ′. The

accuracy of the extrema is dependent only on the accuracy of the optimization algorithm

used. Linear approximation is used to provide additional information: to fill in the gaps

between extrema and paint a more complete picture.

P d′
ε indicates the approximate region in the PVS within whichµd > 0. The perfor-

mances~p ∈ P d′
ε correspond to the performances achievable by all designs that are at least
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minimally acceptable with respect to design considerations (the unquantified aspects of

design performance not represented by performance variables). Functional requirements,

which arise from performance considerations (the quantified aspects of design performance

represented by performance variables) have not yet been included. Applying the combined

functional requirementµp(~p) eliminates performances~p ∈ P d′
ε that are unacceptable be-

causeµp(~p) = 0. The remaining subset of performances are acceptable relative to all

specified preferences.

P d′
1 , which approximates the region in the PVS within whichµd = 1, will be a sub-

set ofP d′
ε . The overall preference on the PVS,µo(~p), is obtained by aggregatingµd(~p)

represented by these twoα-cuts with the combined functional requirementµp(~p). The es-

sential information given byµo(~p), in this particular implementation, consists of the sets of

performances achievable by ideal and acceptable designs:

• designs withµo(~d) = 1 are ideal, and

• designs withµo(~d) ≥ ε are acceptable,

with respect to the preferences specified on the design and performance variables. Addi-

tionally, the effect of functional requirements on design performances is represented by

the variation ofµo(~p) between the extremesε and 1. Due to discretization, however, the

combined design preferenceµd is only mapped at the two extremes, and hence interme-

diate values ofµo(~p) do not reflect the true variation ofµd(~p). The combined functional

requirementµp(~p) is mapped back onto the DVS using the linear approximation~f ′(~d).

The resulting functional requirement on the DVS,µp(~d), is aggregated with the combined

design preferenceµd(~d) to obtain the overall preferenceµo(~d). µo(~d) identifies the ideal

(µo(~d) = 1) and acceptable (µo(~d) ≥ ε) sets of designs described above.

3.4 Design of Experiments

The linear approximationsf ′
1, ..., f

′
q are obtained using techniques adapted from statistical

design of experiments. Design of experiments seeks to derive information about a process

using as few observations as possible. It has two aims: to separate the effects to be mea-

sured from random noise, and to model the process with regression equations. The function
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fj is treated as an unknown process. Note that if the process is deterministic,e.g., a com-

puter program, repeated evaluations will always give the same answer: the output contains

no random noise. Therefore, statistical significance tests to distinguish the signal are un-

necessary. This thesis discusses the use of experiment design only to model deterministic

functions (though statistical significance tests are a valuable technique for processes sub-

ject to noise). The techniques used rely on orthogonal arrays, which specify an efficient,

independent set of points at which the function is evaluated.

Orthogonal arrays are widely used not only for statistical design of experiments but

also for the related Taguchi Method or Robust Design methodology [50, 51] and their di-

rect application to engineering design is not new. Chi and Bloebaum describe a simple

and practical application of orthogonal arrays to a material selection problem for multi-bar

trusses in [8]. Korngold and Gabriele use experiment design to construct a global quadratic

approximation for a multi-disciplinary problem [28]: their methods are similar to those that

have been adopted here. A fundamental difference, however, is that Korngold and Gabriele

have sought to solve a highly complex and general problem from a necessarily abstract and

mathematical perspective. The work presented in this thesis seeks to apply experiment de-

sign techniques specifically to facilitate method of imprecision calculations, and adopts a

pragmatic approach that attempts to address the concerns of potential users. Engineers at

one major U.S. automobile manufacturer, for example, consider each function evaluation

to be a significant cost: it takes approximately15 seconds on a supercomputer to evaluate a

simplifiedfinite element model of a vehicle structure. Furthermore, most engineers do not

have the time to become experts on statistical techniques. New methodologies are expected

to come pre-packaged as out-of-the-box software. Using experiment design to obtain linear

regression models is efficient in function evaluations, does not require advanced statistical

techniques, and is well suited to computer implementation.

The approach is essentially aresponse surface method[38], which seeks to optimize a

response that is influenced by several variables. The functionfj is modeled over the search

spaceDd
ε (the α-cut at infinitesimalα = ε). The Imprecise Design Tool uses a 2-level

experiment design: two levels are sufficient to quantify linear effects. An additional center

point checks for curvature: non-linearity of the function in the interior of the search space.
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A full factorial design would evaluate the same2n corner points ofDd
ε as the LIA, but since

there aren main effects and 1 average to be determined, onlyn + 1 evaluations are strictly

necessary (excluding the center point). A fractional factorial design evaluates a balanced

subset of corner points and is more efficient. But in reducing a full factorial experiment to a

fractional factorial experiment, the2n interactions between then variables are unavoidably

merged orconfoundedwith each other, so that their effects cannot be distinguished. A

key consideration is how interactions should be confounded. Main effects, which are to be

measured, must not be confounded with other main effects. Moreover, it is desirable only

to confound main effects with interactions that are unlikely to exist. It is assumed that main

effects, due to a single variable (e.g., d1, d2), are more likely than two-way interactions

(e.g., d1d2, d1
2), which are in turn more likely than three-way (e.g., d1d2d3, d1

2d2, d1
3)

and higher order interactions.

The resolutionof an experiment design indicates the degree to which it confounds in-

teractions. A resolution III design confounds main effects with two-way and higher order

interactions, and thus satisfies the minimum requirement not to confound main effects.

A resolution IV design confounds main effects with three-way and higher order interac-

tions [4]. Resolution IV experiments provide more reliable information but require more

observations.

Forn = 8, the smallest resolution IV design is a28−4 fractional factorial design requir-

ing 24 = 16 observations. The4 in 28−4 indicates that the28 full factorial design has been

“folded” in half 4 times. A resolution III design would require 12 observations. Figure 3.9

compares the number of observations required for resolution III and IV designs using data

from [51]. Resolution III designs approach the strictly necessaryn+1 function evaluations.

Resolution IV designs require between2n and4n − 4 (wheren > 1) function evaluations.

Of the 16 function evaluations required for then = 8 resolution IV design, 9 are strictly

necessary to estimate the 8 main effects and 1 average, and so there are 7 “redundant” eval-

uations. But these evaluations are not necessarily wasted: they allow main effects to be

separated from two-way interactions, and they provide 7 extra points to verify the accuracy

of the linear regression model.

The number of function evaluations can also be traded-off against accuracy for exper-



64

function
evaluations

number of
resolution IV
resolution III 4n-4

2n

10 1551

4

8

12

16

32

number of design variables (n)

n+1

Figure 3.9 Number of evaluations for a fractional factorial design.

iment design. The linear regression equations obtained replace the function where the ap-

proximation is acceptable (Figure 3.7). The criteria for “acceptable,” which determine how

accurately the function is modeled, can be directly related to the user-specified fractional

precision used by the optimization algorithm. This allows a single parameter to trade-off

computational effort against accuracy for both optimization and experiment design.

A fractional factorial experiment only evaluates corner points. Thus comparison with

the center point can only indicate whetherfj is non-monotonic and the degree to which

it is non-linear, and cannot distinguish the design variable in whichfj is non-monotonic

or non-linear. Iffj is non-linear indi, f ′
j will not accurately approximate~f in di: the

approximation is still valid indi if this inaccuracy is within the user-specified precision.

But if fj is non-monotonic indi, f ′
j is not a valid approximation indi. Monotonicity indi

is the minimum condition fordi to be acceptably linear. In order to estimate non-linearity

and non-monotonicity offj in eachdi, an additional “one-factor-at-a-time” experiment

is conducted. Figure 3.10 shows the points that would be evaluated for a resolution III

fractional factorial experiment (small dots) and a one-factor-at-a-time experiment (large

dots) where there are three design variables. The combined experiment is termed a(face-
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Figure 3.11 Number of evaluations for a central composite design.
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centered) central composite design[38]. This arrangement was chosen in order to include

corner points of theDd
ε n-cube without evaluating points outsideDd

ε . Extrema within

Dd
ε are likely to be corner points. In the absence of these constraints, other arrangements

that seek to obtain a more balanced distribution of information over the search space are

possible,e.g., [38] and [21].

The number of function evaluations required for resolution III and IV central composite

designs is indicated in Figure 3.11. If the functionfj is amenable to linear approximation,

a maximum of4n+1 (resolution III) or6n− 3 (resolution IV) evaluations will be incurred

to obtain the regression equations and up to 2 evaluations will be required for the predicted

α-cut end points.4n+1 and6n− 3 evaluations both exceed then+1 evaluations required

for a one at a time search, but the advantages are fourfold:

1. Monotonicity is not assumed: up to3n − 5 “redundant” points test for monotonicity

and linearity.

2. The center point tests for curvature.

3. The entire data set is used in estimating each effect, instead of two points.

4. An even distribution of corner points is sampled, instead ofn + 1 adjacent corners.

After calculating the linear regression matrixA, the constant offsets∆1, ...,∆q must

be determined (see Equation (3.11)).f ′
j(~d) must approximatefj(~d) over the entire search

spaceDd
ε . Setting∆j = 0 would give a Taylor approximation which is accurate near~dctr

only. Setting∆j such thatf ′
j(~d) passes through the mean value offj(~d) over allevaluated

points would give a close approximation near the boundaries ofDd
ε only, since only one

interior point ~dctr is evaluated. The Taylor expansion offj(~d) near~dctr indicates that the

residual error in approximatingfj is equal to the offset∆j plus second and higher order

terms (~x = ~d − ~dctr where−Li ≤ xi ≤ Li, i = 1, ..., n):

E(~x) = f ′
j(~dctr + ~x) − fj(~dctr + ~x)

= [aj1 ... ajn]~x + ∆j − fj(~dctr + ~x)

= ∆j − K11

(
x1

L1

)2

− K22

(
x2

L2

)2

− ... − K12
x1

L1

x2

L2
− K13

x1

L1

x3

L3
− ....(3.18)
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Figure 3.12 Minimizing
∫ L1

−L1
E2 dx1 with offset∆j (fj = K11x1

2).

For the purpose of determining an appropriate value for∆j , assume that the error in ap-

proximatingfj is predominantly quadratic. In order to minimize
∫
Dd

ε
E2 dV (the square

error integrated overDd
ε ), ∆j should be set to13

∑n
i=1 Kii (Figure 3.12 illustrates a one-

dimensional example). Qualitatively, it is clear that cross-terms (Kikxixk wherei 6= k)

do not introduce the need to offsetf ′
j since they lead to an error that is anti-symmetric

in xi andxk. Square terms (Kiixi
2), however, do require a constant offset to minimize∫

Dd
ε
E2 dV since they introduce an error in one direction only (positive or negative). The

errors (for∆j = 0) at theN2 corner points~d21 , ..., ~d2N2 evaluated by the fractional factorial

experiment nominally average to−∑n
i=1 Kii (cross-terms cancel). The error at each point

~d−
i and ~d+

i evaluated in thedi direction for the one-factor-at-a-time experiment is nomi-

nally equal to−Kii (cross-terms equal zero). The sum of these errors is used to estimate
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1
3
∑n

i=1 Kii:

∆j =
1

3(N2 + 2)

(
−

N2∑
h=1

E(~d2h − ~dctr) −
n∑

i=1

(
E(~d−

i − ~dctr) + E(~d+
i − ~dctr)

))

=
1

3(N2 + 2)

(
N2∑
h=1

fj(~d2h ) +
n∑

i=1

(
fj(~d−

i ) + fj(~d+
i )
)

− (N2 + 2n)fj(~dctr)

)
(3.19)

whereE(~x) is calculated for∆j = 0. The points~d21 , ..., ~d2N2 and~d±
1 , ..., ~d±

n are symmetric

on Dd
ε such that the linear approximationf ′

j averages tofj(~dctr) (for ∆j = 0). Separating

fj(~dctr) in Equation (3.19) simplifies the calculation.

As unacceptably non-linear design variables are eliminated fromf ′
j, ∆j must be re-

calculated since the square error in the design variable that was eliminated no longer needs

to be offset.fj will be calculated in all eliminated, non-linear directions and approximated

only in the remaining, linear directions (Figure 3.7). The re-calculation of∆j is com-

plicated by the need to balance the data such that the result is not overly dependent on

any single evaluated point. Every non-linear design variable that is eliminated reduces the

space thatf ′
j approximates by one dimension. The points~d−

i and ~d+
i evaluated in every

remaining, linear direction (di such thati ∈ L) lie within this reduced space. But all of

the fractional factorial corner points~d21 , ..., ~d2N2 lie outside the reduced space. These cor-

ner points now provide less relevant information that must be adjusted: theKii such that

i /∈ L, corresponding to eliminated design variables, must be subtracted from the estimate

for
∑n

i=1 Kii obtained from the error at each corner point. Moreover, eachKii i /∈ L can

only be estimated from the errors at two evaluated points:~d−
i and ~d+

i . Hence iffj is not

acceptably linear in alln design variables, a different formula must be used to estimate∆j :

∆j =
1

3(2 + nL)

(
2

N2

N2∑
h=1

fj(~d2h ) −
∑
i/∈L

(
fj(~d−

i ) + fj(~d+
i )
)

+
∑
i∈L

(
fj(~d−

i ) + fj(~d+
i )
)

− 2nL fj(~dctr)

)
(3.20)

wherefj is acceptably linear indi∈L and there arenL acceptably lineardi∈L.

A special case arises when there is only one remaining linear design variable forfj, i.e.,
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nL = 1. Sincef ′
j will only be used to approximatefj in a single design variabledi∈L, ∆j

can be directly estimated from~d−
i∈L and~d+

i∈L only, as in Figure 3.12:

∆j =
1
6

(
fj(~d−

i∈L) + fj(~d+
i∈L) − 2fj(~dctr)

)
.(3.21)

3.5 Conclusions

In the method of imprecision, design preferencesµdi
are specified on design variables and

functional requirementsµpj are specified on performance variables. Individual design pref-

erencesµdi
(di) are aggregated into the combined design preferenceµd(~d) and individual

functional requirementsµpj(pj) are aggregated into the combined functional requirement

µp(~p). The aggregation of these combined preferences into the overall preferenceµo is

complicated by the need to map the combined design preference onto the PVS to obtain

µo(~p) = P(µd(~p), µp(~p)) or to map the combined functional requirement onto the DVS to

obtainµo(~d) = P(µd(~d), µp(~d)). Typically, only the forward mapping~f : DVS → PVS is

available.

Previously, design preferences were mapped onto the PVS using the Level Interval

Algorithm (LIA). The LIA begins by discretizing individual design preferences intoM

levels of preferenceα1, ..., αM . The individual design preference intervals obtained are

then aggregated into combined design preferenceα-cut setsDd
α1

, ...,Dd
αM

. The LIA has

four important limitations:
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1. Theα-cutsDd
αk

must ben-cubes, which is accurate only if aggregation usesPmin.

2. The calculated performance variable endpointspj
αk
min andpj

αk
max are only correct un-

der certain conditions: in practice these require thatfj be monotonic.

3. The endpoints obtained only indicate extremal points in eachpj on P d
αk

, the com-

bined design preferenceα-cut in the PVS: the full geometry ofP d
αk

is not determined.

4. Up to 2n function evaluations are required to evaluate eachα-cut, a number that

quickly becomes prohibitive as the number of design variablesn increases.

The methods presented in this chapter were developed to address these limitations.

The key limitation of the LIA, that it requires monotonicity, may be removed by refor-

mulating the problem as a constrained optimization:pj
αk
min is the minimum andpj

αk
max is the

maximum ofpj in Dd
αk

. In the interests of minimizing the number of potentially expensive

function evaluations, a traditional calculus-based optimization algorithm, Powell’s method,

was chosen for the computational implementation described in this thesis.

A key contribution of this thesis is the provision of a fractional precision that permits the

designer to trade-off the number of function evaluations against the quality,i.e., accuracy

and reliability, of the answer obtained. This adjustment allows the designer to use the

same computer program to obtain quick estimates as well as precise evaluations. Applying

Powell’s method with a maximum fractional precision of 1 reduces the number of function

evaluations required perα-cut from2n to 2n+2, orn+2 if monotonicity is assumed. Such

a minimalist computation is, however, unlikely to be robust.

For aggregation using functions other thanPmin non-n-cubic α-cuts at intermediate

levels of preference betweenαk may be created in addition to then-cubicα-cuts at pref-

erencesαk (Section 3.3). In Section 5.1 this complicated geometry will be shown to be

simplified when the method is implemented.

In order to address the issue of robustness as well as the remaining two limitations of

the LIA (that theDd
αk

must ben-cubes and that the full geometry ofP d
αk

is not determined),

an approximation~f ′ for ~f : DVS → PVS is constructed overDd
ε (theα-cut at infinitesimal

α = ε). Although Section 3.3 only discusses the problem of mappingn-cubicα-cuts from
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the DVS to the PVS using~f ′, there is no fundamental difficulty in extending this approach

to map non-n-cubicα-cuts. A linear approximation is chosen for~f ′ for three reasons:

1. Higher order approximations introduce additional complexity, both in the shape of

the level sets mapped onto the PVS and in the computational algorithm, that is not

clearly justified.

2. If ~f is not strongly non-linear, the selective use of a linear approximation to sketch

P d
αk

where the precise geometry is not required is expected to be adequate: during

preliminary design, approximate answers are sufficient.

3. The difficulty of interpreting an irregularP d
αk

set with curved boundaries in more

than two dimensions suggests that a higher order approximation may be of limited

value for problems with more than two performance variables.

A linear approximation is unlikely to accurately approximate~f in all n design variables.

That is not, however, the aim of constructing~f ′. Obtaining a linear approximation~f ′ fulfills

four purposes:

1. It removes acceptably linear design variables from the search space for optimization.

2. It supplies a global approximation to~f overDd
ε for determining the geometry ofP d

αk

between extremal points.

3. It enables the calculation of design sensitivitiesκαk
ji .

4. It provides a computationally tractable, albeit approximate, means to map the com-

bined functional requirement from the PVS onto the DVS.

The mapping ofDd
αk

onto the PVS does not depend entirely upon the accuracy of the linear

approximation~f ′. The shape ofP d
αk

in the PVS is constructed by obtaining extremal points

in eachpj via optimization (facilitated by linear approximation), and then interpolating the

bounding edges between points using~f ′.

It is not expected that many performance variables will be well modeled by a linear

approximation, even within a limited region of the DVS. But the linear approximation~f ′

furnishes additional information about the shape ofP d
αk

away from extremal points that
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would otherwise be unavailable.~f ′ is used to provide approximate information not to re-

place precise information, but to replace a lack of information. It will be demonstrated

in Section 4.2 that a selectively applied linear approximation is surprisingly effective in

evaluating an example finite element model of an automobile body.

The linear approximation~f ′ overDd
ε is obtained using techniques adapted from exper-

iment design. The use of experiment design to explore the design space and optimization

assisted by linear approximation to map preferences is a key contribution of this thesis.

Using experiment design to obtain a linear regression model is efficient in function eval-

uations, does not require advanced statistical techniques, and is well-suited to computer

implementation. The Imprecise Design Tool uses a 2-level fractional factorial experiment

design which evaluates a balanced subset of corner points: two levels are sufficient to quan-

tify linear effects. An additional center point checks for non-linearity of the function in the

interior of the search space. Resolution IV fractional factorial experiments require more

function evaluations than resolution III experiments, but the additional evaluations increase

the reliability of the information obtained. This will be demonstrated in Section 4.2.

Fitting a linear approximationf ′
j to a functionfj over the entire search spaceDd

ε , in-

stead of at a single point, necessitates an offset∆j. A procedure for determining appropriate

values for∆1, ...,∆q in order to minimize
∫
Dd

ε
E2 dV , the square error integrated overDd

ε ,

was described in Section 3.4.

The fractional precision linked to optimization also controls the criteria for whether~f ′

approximates~f sufficiently accurately in each design variabledi. Only sufficiently linear

variables are approximated for optimization. In order to discern the linearity of individual

design variables, an additional one-factor-at-a-time experiment is conducted to complete a

central composite design. The total number of function evaluations required is3n + 2 to

4n + 1 for resolution III and4n + 1 to 6n − 3 for resolution IV. These function evaluations

are in addition to those required for subsequent optimization, but they are necessary for

constructing the linear approximation~f ′, and they provide robustness. Before optimization

begins the search space is characterized and a balanced set of points is evaluated, although

only the center point lies in the interior ofDd
ε . The likely location of the global minimum

based on evaluated points is chosen as the starting point for optimization. Thus experi-
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ment design is a valuable exploration of the search space that facilitates the subsequent

optimization process.
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Chapter 4

Computational Implementation

The Imprecise Design Tool (IDT) is a C program developed to verify the algorithms de-

scribed in Chapter 3 and to demonstrate the method of imprecision on engineering prob-

lems. The work described in this chapter addresses many of the practical difficulties that

arose from trying to create a computational design tool that might be useful to engineers in

industry. This section describes the evolution of the IDT itself, through example applica-

tions to aircraft engine development and automobile structure design.

4.1 The Engine Development Cost Estimator

The first application of the IDT was to a cost estimation problem provided by General Elec-

tric Aircraft Engines, Cincinnati, Ohio. “Gas turbine engines exert a dominant influence on

aircraft performance and must be designed for each specific application [35].” At Gen-

eral Electric, the Engine Development Cost Estimator (EDCE) is used to provide an early

estimate of the cost of developing a new aircraft engine: a cost measured in hundreds of

thousands of dollars. The EDCE is one of several programs that together estimate the total

lifetime cost of an engine.

The EDCE uses a separate database for each engine program that contains estimates

for the various components of development cost. Costs are modified by parameters such as

learning, program length, and whether various tests are to be included in the development

cost. The most important input variables which have the greatest effect on the calculated

cost represent the degree of innovation in the components and subsystems of the new en-
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Figure 4.1 Schematic diagram of a turbofan engine.

gine. These variables are significantly imprecise: the degree of innovation for a particular

component of the engine will, in general, not be known precisely in advance. Eight of

the variables corresponding to eight subsystems were chosen to be design variables (Fig-

ure 4.1):

d1 control and accessories

d2 exhaust nozzle

d3 bearing and lubrication

d4 low pressure turbine

d5 high pressure turbine

d6 high pressure compressor

d7 combustor

d8 fan system

The EDCE represents degree of innovation as a percent change relative to an existing

baseline design. A value of “0%” ford8, which corresponds to the fan system, indicates

that the engine to be developed does not possess a fan system. A value of “10%” indicates

that only support engineering will be required. At the other extreme, “200%” indicates a

new fan with similar or existing technology, fitted to a new engine design. The numeric
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Figure 4.2 The Imprecise Design Tool and the EDCE.

values of percent change for each of the ten levels defined by the EDCE are unimportant:

the designer relies on the verbal definition of each level, which is specific to each input.

Intermediate values between levels are undefined, and hence the eight inputs are effectively

discrete. The EDCE produces a single outputp = f(~d): the estimated development cost

for the new engine.

The EDCE calculates development cost given a set of precisely specified, crisp inputs.

The role of the IDT was to provide a fuzzy interface to the EDCE that quantified the inherent

imprecision in the design variablesd1, ..., d8 and performance variablep and evaluated

imprecise outputsµ(~d) andµ(p) (Figure 4.2). The EDCE defined the crisp mappingf :

DVS → PVS used by the IDT to perform fuzzy calculations.

Since the design variablesd1, ..., d8 are discrete, each design preferenceµdi
was spec-

ified as an array of preference values, one for each valid design variable valuedi ∈ Xi.

Since the IDT discretized preference into tenα levels0.1, 0.2, ..., 1.0 the user was effec-

tively restricted to those ten preference values. The functional requirement on development

cost was specified as a list of points(p, µp), defining a piecewise linear preference function.

This early version of the IDT assumed that all preferences would be traded-off with

a non-compensating aggregation functionPmin. Hence the individual design preferences

µdi
(di) could be aggregated inton-cubic combined design preferenceα-cutsDd

αk
using the
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Cartesian product (Section 3.3). TheDd
αk

were then mapped to intervals[pj
αk
min, pj

αk
max] on

the PVS using the Level Interval Algorithm (LIA) described in Section 3.1. The LIA was

valid because development cost was monotonic in each of the eight design variables, over

the range of values specified. The representation of preference as intervals approximated

the discrete DVS. Although the limits of the[di
αk
min, di

αk
max] and[pj

αk
min, pj

αk
max] intervals cor-

responded to valid points in the DVS, only certain discrete values had meaning within these

intervals. Nevertheless, the calculation of seemingly continuous performance intervals was

valuable in identifying the limits of development cost at each preference levelαk. In the

example presented below, the points identified by the IDT as promising were all interval

endpoints that corresponded to valid points in the discrete DVS.

The original LIA required2n = 256 function evaluations to calculate eachα-cut inter-

val in p. Tenα-cuts required 2560 evaluations. At 15 seconds per evaluation on a Sun4,

the total time required exceeded ten hours. A number of pragmatic measures were taken to

substantially reduce the time required. A lookup table was created to store values off(~d)

calculated by the EDCE. Using the lookup table avoided repeated function evaluations not

only for subsequent iterations but also for the current design calculation. Because the de-

sign variables were discrete, adjacentα-cut intervals often had common endpoints. These

common endpoints only needed to be evaluated or looked up once. Furthermore, it became

clear that specifying ten distinctα-cuts was unwieldy and that restricting preferences to

some subset of the values0.1, 0.2, ..., 1.0 simplified preference calculations without sacri-

ficing any important information.

The combined design preference on the PVS,µd(p), and the functional requirement

µp(p) were then aggregated usingPmin to obtain the overall preferenceµo(p), expressed as

an ordered list of pairs(p, µo) defining a piecewise linear preference function on the PVS.

The same step also identified the peak preferenceµ∗
o and the corresponding peak preference

set of development costsY∗.

An early solution to the problem of mappingY∗ back onto the DVS to obtainX ∗ used

the α-cut calculations that mappedµd(~d) onto µd(p). The IDT first determinedα∗, the

largestαk ≤ µ∗
o. For a non-compensating trade-off, the set of peak preference designs

X ∗ is a subset ofDd
α∗ becauseµo = min(µd, µp) ≤ µd ∀µp and thusµo(~d) < α∗ ≤
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µ∗ ∀~d /∈ Dd
α∗ : only design configurations~d ∈ Dd

α∗ can have overall preferenceµo(~d)

equal toµ∗
o. Therefore,µ(~d) was calculated at every~d ∈ Dd

α∗ for which there existed a

lookup table entry forf(~d). Any ~d ∈ Dd
α∗ with µ(~d) = µ∗ indicated a peak preference

design configuration. Wheref(~d) was not immediately available,µd(~d) provided an upper

bound since, for a non-compensating trade-off,µo ≤ µd. Thusµ(~d) or an upper bound

for µ(~d) was obtained at every~d ∈ Dd
α∗ that could potentially be a peak preference design

configuration. Moreover, no additional function evaluations were required to obtain this

information. In order to permit the user to visualize the variation ofµo on the DVS, points

could be specified about which the IDT would generate eight 2D cross–sections ofµo in

one design variable, or four 3D cross–sections ofµo in two design variables.

4.1.1 Example: Development of a Turbofan Engine

A typical aircraft engine development program begins with the receipt of a Request for

Proposal (RFP) from the aircraft engine user (the customer) [35]. The RFP, a requirements

document describing the final flying characteristics of an aircraft to be developed, is the cul-

mination of exploratory discussions between the customer and potential suppliers. Suppose

that after examination of the RFP and discussions with airframe companies, the design team

has decided that a particular turbofan configuration will be required. New aircraft engines

are usually derived from existing designs [13]. In this example, the design team has two

options:

1. Develop the new engine from an existing turbojet design by the addition of a front

fan with matching shaft and low pressure turbine (Figure 4.1). The turbojet engine

will require minimal redesign to satisfy the RFP, but the addition of a fan, shaft, and

low pressure turbine, even if taken from an existing engine, is a major design change.

2. Modify an existing, but dated, turbofan design. No major design changes will be

necessary, but many subsystems will need to be modified.

At this preliminary stage of design, the design team must decide which option to pursue. A

key consideration is the total development cost for the engine, which can be estimated by

the EDCE. The degree of design change that the designers feel will be required in the eight
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subsystems of the new engine is imprecise, but the IDT permits the imprecise nature of this

design information to be retained.

The method of imprecision begins with the specification of the individual design prefer-

encesµd1 , ..., µd8 and the functional requirementµp, and the identification of an appropriate

hierarchy of design trade-offs. In order to correctly identify appropriate design trade-offs,

it is first necessary to clearly distinguish what the various design preferences and functional

requirement represent for this particular problem. The design variablesd1, ..., d8 are inputs

to the EDCE that represent the degree of innovation or design change in eight subsystems

of the gas turbine engine to be developed. The single performance variablep = f(~d)

quantifies the development cost that corresponds to the “design”~d. Yet ~d specifies not a

particular engine design, but a particular set of degrees of design change, specified for each

subsystem. Different points~d ∈ DVS represent, for example, the choice between a minor

change to a different hole pattern in the combustor and a slightly more significant change

to different nozzles.

The functional requirementµp(p) represents the customer’s preferences among values

of development costp. These preferences on development cost are easily understood but

less easily quantified. Clearly, lower development cost is preferable and this corresponds

to a functional requirement with decreasing preference for increasing cost. Yet the exact

variation ofµp(p) with p would, for a real design problem, depend on many factors and

would hence be difficult to define. The functional requirementµp(p) specified here de-

creases linearly from one, at the minimum development cost (for a turbofan engine with no

design modifications), to zero, at the maximum development cost (see Figure 4.5 or 4.6).

This choice ofµp, though reasonable, is arbitrary.

Recall that design preferencesµdi
represent the preference that the designers have for

values of each design variabledi based on aspects of design performance that are not al-

ready represented by performance variables. Development cost is already modeled as a

performance variable. Given the high level, abstract nature of the design variables defined

by the EDCE, specific measures of engine performance are not yet relevant. A more com-

pelling consideration is the feasibility of a particular design~d: whether the levels of design

change defined by~d will support an engine design that meets the specifications in the RFP.
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Figure 4.3 Design preferencesµd1 , . . . , µd8 for the turbojet option.
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Figure 4.4 Design preferencesµd1 , . . . , µd8 for the turbofan option.
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Figure 4.5 µo, µd, andµp on the PVS, for augmenting the turbojet.



83

Figure 4.6 µo, µd, andµp on the PVS, for modifying the turbofan.
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An excessively high level of design change, however, introduces unnecessary complexity

into the engine design. Moreover, both of these considerations must be assessed separately

for each design option. Thus feasibility and necessity of a particular level of design change

is determined in the context of either augmenting the turbojet or modifying the turbofan.

This leads to a different set of design preferences for each design option.

The design preferences determined by the design team based on these considerations are

shown in Figures 4.3 and 4.4. Note that this example examines two separate design options

that represent two markedly different types of engine development programs. It is necessary

to deal with these two options separately, even though the same functional requirement on

cost will be applied for both and even though the two different sets of design preferences

specified over the same design variablesd1, ..., dn may overlap. The design preferences

differ because feasibility is assessed relative to each engine development option. Thus the

imprecise specification of each development program is realized in the design preferences

shown in Figures 4.3 and 4.4.

How then, should the design preferences be traded-off against each other? A highly

feasible and necessary level of design change in one subsystem cannot compensate for

a less feasible or excessive level of design change in another subsystem. Thus a non-

compensating trade-off (aggregation functionPmin) is indicated for combiningµd1 , ..., µd8 .

The correct trade-off between the combined design preferenceµd and the functional re-

quirementµp is less obvious. To what extent does a highly feasible and necessary set of

design change levels compensate for a high development cost? Conversely, to what ex-

tent does a low development cost compensate for a less feasible or excessive set of design

change levels? As a first approximation, a non-compensating trade-off is assumed. It will

be shown below that the difficulty of quantifying the functional requirement on cost renders

the exact trade-off betweenµd andµp moot.

Figures 4.5 and 4.6 showµd(p) andµo(p) calculated by the IDT for each of the two

options. The development costs shown are representative and were not calculated using

actual cost data. For augmenting the turbojet (option 1), the peak preferenceµ∗
o is equal

to 0.80 at an estimated development cost of $185 million. For modifying the turbofan

(option 2), µ∗
o is equal to0.85 at an estimated development cost of $165 million. For
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the design preferences, functional requirement, and design strategy specified, the turbofan

option results in a higher peak preference, suggesting that it is the better design choice.

Figures 4.5 and 4.6 show that the functional requirementµp(p) truncates the combined

design preferenceµd(p) to produce the overall preferenceµo(p). This is because the non-

compensating trade-off simply takes themin of µd(p) andµp(p). As given,µp(p) correctly

reflects a relative preference for designs with lower cost p, butµp(p) is an absolute measure.

This is an important distinction because absolute preference on cost is traded-off against

absolute preference on the feasibility and necessity of design changes and themin of the

two is the measure by which the design is assessed. Figures 4.5 and 4.6 demonstrate that

loweringµp(p) results in lower peak overall preferenceµ∗
o, corresponding to lower design

preferences and a different set of peak preference designs. The correct decision therefore

hinges on quantifying the customer’s absolute preference on cost. But the customer’s abso-

lute preference for cost cannot be accurately quantified if it is no more specific than a desire

to minimize cost.

Assuming that only the direction of the slope ofµp(p) is known, consider the effect of

varying the point at whichµp(p) intersects theµd(p) pyramid. On theµd(p) = 1 plateau

[p1
min, p

1
max], the lowest cost pointp1

min = $185 million must be preferred over all other

points in the interval. Indeed,p1
min must be preferred over all points to the right on the

pyramid, since these points have costp > p1
min and preferenceµ(p) ≤ 1. Hence only

points on the left side of the pyramid wherep ≤ p1
min are of interest. The point at which

µp(p) intersectsµp(p) determines which performancep ≤ p1
min achieves the peak overall

preferenceµ∗
o.

Instead of relying on a well-defined absolute functional requirementµp to define the

most preferred performance, a less formal method may be used. Figure 4.7 compares only

the design preferenceµd(p) for the two options. The customer’s preferences on cost may

now be informally applied to the quantified design preferences to identify preferred perfor-

mancesp ∈ Y∗. In the absence of a sufficiently strong preference for minimizing cost, the

most preferred performance isp1
min = $185 million on theµd(p) = 1 plateau.p1

min can

be considered to be a baseline point. As the desire to reduce development cost increases,

points to the left ofp1
min with lower development cost, but lower design preference, become
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Figure 4.7 µd on the PVS for the turbojet and turbofan options.
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increasingly attractive. This reflects an informal trade-off between lower development cost

and lower feasibility implied by lower design preference. Even though this trade-off is not

formally modeled as a specific aggregation operation on well defined preference functions

P(µd, µp), it can still be represented on Figure 4.7. Atµd(p) = 0.9, p0.9
min = $165 million

for augmenting the turbojet is preferred overp0.9
min = $185 million for modifying the tur-

bofan. Consider the choice betweenp0.9
min = $165 million for augmenting the turbojet

and the baselinep1
min = $185 million for modifying the turbofan. A straight line drawn

through the two points is a simple indicator of the trade-off involved. A steeper slope yields

a smaller decrease in cost for the same decrease in design preference. In the absence of

any specific preferences on cost, such as a maximum budget of $160 million, the overall

preferred performance will either be the baseline point or the point that defines (or one of

the co-linear points that together define) the shallowest trade-off line. Any point on the

µd pyramid below this line involves a steeper and presumably less desirable trade-off be-

tween development cost and design preference. For this example, the two points that the

designers should choose between (assuming that no additional considerations enter into the

decision) arep1
min = $185 million for modifying the turbofan andp0.9

min = $165 million

for augmenting the turbojet. If some additional constraint rules outp1
min = $185 million

for the turbofan option, the next shallowest trade-off is given byp0.8
min = $159 million for

the turbojet option. Thus a non-specific, relative preference on development cost can be

informally applied to the combined design preference on performanceµd(p) in order to

highlight promising performances from which a peak preference set of performancesY∗

can be chosen.

The results presented are from an early version of the IDT that used the original LIA. 12

function evaluations were required to map the design preferencesµd1 , ..., µd8 onto the PVS

for the first alternative and 128 for the second. The design preferences for the two alterna-

tives had 4 and 5α-cuts with some coincident end points, especially for the first alternative,

and the number of dimensions in the search space was 3 and 6. A more recent version of the

IDT that implemented Powell’s method modified for a discrete DVS reproduced the same

results. Without taking advantage of monotonicity this later version of the IDT required

12 and 38 function evaluations for the two alternatives. As expected, optimization has a
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greater advantage for largern. An example demonstrating the more advanced preference

calculation techniques introduced in Chapter 3 is presented in Section 4.2.1.

4.2 Vehicle Structure Design

A more recent application of the IDT was motivated by discussions with engineers at a

major U.S. automobile manufacturer. These engineers were primarily involved in design

for noise, vibration, and harshness (NVH). NVH design is concerned with three aspects

of vibration: audible noise, tactile vibration, and subjective evaluations of safety, comfort,

and luxury based on perceived levels of noise and vibration. Measures of static rigidity

(stiffness in bending and torsion) are indicators of perceived safety, comfort, and luxury

levels: overly compliant vehicles rate poorly, though extremely stiff vehicles may suffer

from high-frequency noise. Generally, different classes of vehicles and different body types

have different standards for bending and torsional stiffness. Measures of dynamic response

(modal frequencies and shapes, for the whole vehicle structure as well as for specific panels)

directly predict noise and vibration characteristics [12].

The body-in-white is the principal load-bearing structure of the vehicle consisting of

thin-walled parts welded, bolted, or glued together, including the windshield and back-

lite (rear window) which are structurally significant (Figure 4.8). Chassis and powertrain

components, trim items (decklid,i.e., trunk lid, dashboard, doors, hood), and components

attached using a rubber mount are excluded. Although the parts excluded from the body-

in-white add to the overall stiffness of the vehicle, they also add mass, and thus the static

rigidity and dynamic response of the complete vehicle is considered to be well modeled by

the body-in-white [12].

At this particular U.S. automobile manufacturer, the static and dynamic response of

the body-in-white is calculated using a commercial finite element package, usually on a

supercomputer. Two types of finite element model are used: detailed and simplified. A

detailed model typically contains 30,000-100,000 elements and requires 15 people about 2

months to construct by hand, using shape information from stylists. Detailed models are

considered accurate: static stiffnesses are within 10% of test results [12].
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A simplified model contains 5,000-10,000 elements. Simplified models were intro-

duced at the company 2-3 years ago to reduce the calculation time required: they use fewer

shell elements and approximate key structural members and joints with beam and spring

elements. Preparing a simplified model from a detailed model requires about half the time

needed to construct the detailed model, though sometimes a mix of parts from different

models for different vehicles are used to create a new simplified model. The simplified

model only approximates the detailed model: fewer elements correspond to fewer degrees

of freedom and greater apparent stiffness. Thus the simplified model is 10-15% stiffer than

the detailed model, and local behavior especially acoustic response is poorly modeled [12].

A key constraint was that each finite element calculation of static and dynamic response

required significant supercomputer time: approximately 15 seconds to evaluate a simplfied

model [12]. Hence each function evaluation carried a significant cost, both directly in terms

of billed supercomputer time and also in terms of the time delay. Therefore, in applying

the method of imprecision to this problem, a key consideration was to minimize the num-

ber of function evaluations incurred. The optimization and experiment design techniques

described in Chapter 3 were developed to address this issue. At this time, computational

implementation of these methods is incomplete, and in particular, the IDT has not yet been

extended to simultaneously map multiple performance variables.

Figure 4.9 shows the role of optimization and experiment design in the current version

of the IDT. The information flow for one performance variablepj = fj(~d) is indicated.

The IDT begins by calling the experiment design module which conducts a central com-

posite experiment overDd
α1

, theα-cut with lowestα, and constructs a linear approximation

f ′
j. Optimization is then called to search for the extremapj

αk
min andpj

αk
max for eachDd

αk
.

Optimization uses the linear coefficients determined by the experiment design module to

determine starting points. The linear approximationf ′
j replaces the functionfj for any de-

sign variables that are adequately approximated. The fractional precision “prec” used by the

optimization and experiment design modules trades-off the number of function evaluations

against accuracy.
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Figure 4.10 Finite element model of a car body.



93

4.2.1 Example: Finite Element Analysis of a Vehicle Body

The finite element model of the passenger compartment of an automobile body shown in

Figure 4.10 was prepared by Michael Scott. It is not intended to be a realistic model of

any particular vehicle or even of any real vehicle in general. The basic geometry, however,

is similar to a typical four-door body-in-white as illustrated in Figure 4.8. In an effort to

simulate part of the vehicle structure design process, a commercial finite element package

was used to calculate bending and torsional stiffnesses using standard loads and support

constraints obtained from [12]. This section discusses the application of the IDT to the

problem of calculating two performance variables, bending and torsional stiffness, for ten

design variables.

Bending stiffnessKB is defined as the total load applied at two pairs of matching points

(i.e., total of four) on the rocker rail, divided by the displacement averaged over several

points on both sides of the vehicle body [12].KB has units of pounds force per inch (lbf/in).

Torsional stiffnessKT is defined as the torque applied between two pairs of matching load

points, divided by the axial angle of twist measured between the pairs of load points [12].

KT has units of foot pounds force per degree (ft-lbf/◦).

Ten design variables were selected (all units are inches, except where indicated other-

wise):

d1 0.10–0.20 B pillar gauge (thickness of hollow rectangular cross-section)

d2 0.10–0.20 C pillar gauge

d3 0.07–0.13 A pillar gauge

d4 0.10–0.20 hinge pillar gauge

d5 0.07–0.13 roof rail gauge

d6 0.07–0.13 rocker gauge

d7 0.03–0.05 floor gauge (plate thickness)

d8 0.03–0.05 roof gauge

d9 0.15–0.25 cross-sectional area of each cross-brace (square inches)

d10 -2.0–2.0 fore-aft location of B pillar (fore is positive)

The ranges indicated are the maximum acceptable values assumed, which correspond to

[di
ε
min, di

ε
max].
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III IV
design variabledi a21i a1i a21i a1i κε

1i

B pillar gauge 14,400 13,800 10,800 10,800 0.053
C pillar gauge 21,700 22,300 25,100 25,100 0.123
A pillar gauge 29,600 30,300 33,600 33,700 0.099
hinge pillar gauge 26,400 26,800 28,500 28,500 0.139
roof rail gauge 153,000 155,000 160,000 161,000 0.471
rocker gauge 345,000 346,000 341,000 342,000 1.000
floor gauge -17,600 18,700* 20,200 20,100 0.020
roof gauge -23,900 4,390* 7,610 7,420 0.007
cross-brace area -5,660 169* -1,210 169* 0.001*
B pillar location -340 -325 -207 -209 -0.041

Table 4.1 Linear regression results for bending stiffnessKB.

Initially, the fractional precision was set to its highest value, 1, in order to test whether

a minimally acceptable linear approximation could be constructed. Linear regression co-

efficients for bending stiffness calculated by the IDT for resolution III and resolution IV

experiments are shown in Table 4.1. Design sensitivitiesκε
1i are shown for the resolution

IV experiment.a21i denotes regression coefficients calculated from the fractional factorial

experiment alone. Regression coefficients for the full central composite design are denoted

a1i. Note that apart fromB pillar location, all design variables should have positive coef-

ficients for bothKB andKT : thicker gauges should increase both bending and torsional

stiffness. The negative resolution III coefficientsa217, a
2

18, a
2

19 for floor gauge, roof gauge,

and cross-brace areain Table 4.1 imply that thickening the floor, roof, or cross-braces

would decrease bending stiffness and are hence clearly invalid. The IDT flagged the corre-

spondinga17, a18, a19 (originally negative) as not acceptably linear because they disagreed

in sign with the observed slope in the design variablesd7, d8, andd9 (all positive). In such a

case the observed sign is more reliable than the calculated coefficient since relatively small

non-linearities in a variable such asrocker gaugecan strongly influence the calculated co-

efficent for less significant variables. Asterisks indicate that the coefficients for these not

acceptably linear design variables are instead estimated from the one-factor-at-a-time ex-

periment exclusively: they are therefore approximate. Note that the resolution III and IV
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experiments differ only in the fractional factorial: the one-factor-at-a-time experiment is

identical.

The similarity betweena21i anda1i is potentially misleading:a1i is obtained by adding

the results from the one-factor-at-a-time experiment toa21i. Thus the agreement of the re-

sults for a particular resolution is to a certain extent guaranteed. Especially close agreement,

however, forhinge pillar gauge, roof rail gauge, androcker gaugesuggests that these vari-

ables are significantly linear. The largest approximation error at a point evaluated in a

design variable direction for a linear approximation in the seven acceptably linear variables

was 2,840 lbf/in (4%) at~d−
6 (rocker gauge). (The center point bending stiffness was 78,400

lbf/in, which is not unreasonable in comparison with actual vehicles [12].) Errors forroof

rail gaugeare also large, suggesting thatKB is significantly linear in these variables only

relative to their large effect onKB . The error in the approximation was similar for all seven

acceptably linear variables. All of the errors were positive except at the center point,i.e.,

~f ′ > ~f at all evaluated points except~dctr. The error at the center point is equal to the offset

∆1, which was negative. The same was observed for the resolution IV experiment. This

implies that both approximations overestimate bending stiffness near the exterior ofDd
ε and

underestimate bending stiffness near the center point.

It is assumed that the results from the resolution IV experiment are more reliable than

the results from the resolution III experiment. The relatively close agreement ofa21i and

a1i for resolution IV compared to resolution III is largely because of the increased number

of points evaluated in the fractional factorial experiment (with center point): 13 versus 33.

The number of additional points evaluated to complete the central composite design was 20

regardless of the resolution. For the approximation constructed in the nine acceptably linear

variables, the largest approximation errors were measured for the fractional factorial corner

points ~d21 , ..., ~d2N2 . The largest of these errors was 4,740 lbf/in (6%). Clearly, unmodeled

non-linear effects exist. Errors were, however, largely symmetric, withE(~d−
i ) ≈ E(~d+

i ):

no design variable was unevenly approximated. The limits chosen for the ten design vari-

ables were not narrow: bending stiffness varied from 56,900 lbf/in to 97,000 lbf/in.

For the resolution III experiment, the approximation constructed in the seven acceptably

linear variables had a similar degree of accuracy. The largest error, for~d22 , was 4,490 lbf/in
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III IV
design variabledi a22i a2i a22i a2i κε

2i

B pillar gauge 19,500 19,900 20,600 20,700 1.000
C pillar gauge 1,760 2,100 4,100 4,110 0.198
A pillar gauge 9,040 8,930 8,350 8,340 0.242
hinge pillar gauge -217 550* 962 938 0.045
roof rail gauge 17,500 17,400 15,900 15,900 0.461
rocker gauge 31,400 31,800 31,800 31,800 0.922
floor gauge 62,600 63,700 67,900 68,000 0.657
roof gauge -13,500 4,570* 5,080 5,050 0.049
cross-brace area -2,150 132* 81.7 84.6 0.004
B pillar location -61.3 -58.0 -24.8 -25.6 -0.049

Table 4.2 Linear regression results for torsional stiffnessKT .

(6%). Thus for the purposes of optimization,KB is as well approximated by the resolution

III experiment as by the resolution IV experiment, for those variables that were found to be

acceptably linear for each resolution. But the resolution IV approximation linearizes nine

variables compared to seven variables for the resolution III approximation.

The design sensitivitiesκε
1i tabulated for the resolution IV experiment show thatrocker

gaugeis the critical design variable. The estimated change in bending stiffness between the

acceptable extremes ofroof rail gauge(κε
15 = 0.471) is less than half the corresponding

estimated change forrocker gauge. Bending stiffness also depends significantly onhinge

pillar gauge (κε
14 = 0.139) andC pillar gauge(κε

12 = 0.123). Down the list it is seen

that roof gauge, floor gauge, andcross-brace areaare relatively unimportant variables in

determining bending stiffness. Forces are largely being transmitted through the roof rail

and rocker.

Linear regression coefficients and design sensitivities for torsional stiffness are shown

in Table 4.2. For the resolution III experiment, three variables were invalid because the

sign of the regression coefficient disagreed with the sign of the observed slope. For the

resolution IV experiment, however, all ten variables were acceptably linear. The results for

both bending and torsional stiffness demonstrate that a resolution IV experiment is likely

to resolve more linear variables than a resolution III experiment. Additionally, Tables 4.1
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III IV
∆j ∆L

j ∆j ∆L
j

bending (lbf/in) -1,230 -548 -1,240 -456
torsion (ft-lbf/◦) -261 -115 -258 -258

Table 4.3 Center point offsets for bending and torsional stiffness.

and 4.2 suggest that variables with small design sensitivities tend to be less easily resolved.

The largest approximation error for the resolution III approximation in seven variables was

E(~d29 ) = 1, 010 ft-lbf/◦ (7%). (The center point torsional stiffness was 13,300 ft-lbf/◦,

which is comparable with actual vehicles [12].) The largest approximation error for the

resolution IV approximation in all ten variables wasE(~d24 ) = 1, 350 ft-lbf/◦ (11%). Tor-

sional stiffness was overestimated near the exterior ofDd
ε and underestimated near the

center point. Errors were largely symmetric withE(~d−
i ) ≈ E(~d+

i ). These effects, which

were common toKB andKT , may be an artifact of the finite element analysis.

The design sensitivities in Table 4.2 show that the two most important variables for

torsional stiffness areB pillar gauge (κε
21 = 1) and rocker gauge(κε

26 = 0.922). The

distinction is not as pronounced as for bending stiffness: torsional stiffness depends sig-

nificantly onfloor gauge(κε
27 = 0.657), roof rail gauge(κε

25 = 0.461), A pillar gauge

(κε
23 = 0.242), andC pillar gauge(κε

22 = 0.198). Recall thatroof gauge, floor gauge, and

cross-brace areahad low values ofκε
1i for bending stiffness. Therefore, increasingfloor

gaugeselectively increases torsional stiffness. To a lesser extent, increasinghinge pillar

gaugeselectively increases bending stiffness.

The offsets∆j (for all ten variables) and∆L
j (for acceptably linear variables) are shown

in Table 4.3. The offsets calculated from the fractional factorial points were not significantly

changed when the one-factor-at-a-time experiment results were added and are thus not tab-

ulated. This indicates that the quadratic error estimates from the two separate sets of points

are similar. The agreement between the values for∆j for the resolution III and IV experi-

ments is also good. Comparisons involving∆L
j are not meaningful because the number of

linear variables approximated differs. The offset determines the error at the center point.
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prec= 1 prec= 0.01
design variabledi di

ε
min di

ε
max pj

ε
min pj

ε
max pj

ε
max

B pillar gauge 0.10 0.20 0.10 0.20 0.20
C pillar gauge 0.10 0.20 0.10 0.20 0.20
A pillar gauge 0.07 0.13 0.07 0.13 0.13
hinge pillar gauge 0.10 0.20 0.10 0.20 0.20
roof rail gauge 0.07 0.13 0.07 0.13 0.13
rocker gauge 0.07 0.13 0.07 0.13 0.13
floor gauge 0.03 0.05 0.03 0.05 0.05
roof gauge 0.03 0.05 0.03 0.05 0.05
cross-brace area 0.15 0.25 0.15 0.25 0.25
B pillar location -2.0 2.0 2.0 -2.0 -1.3

bending stiffnessKB 56,900 96,900 97,000
torsional stiffnessKT 9,400 16,900 16,900

Table 4.4 Extrema for bending and torsional stiffness inDd
ε .

∆1 = −1, 240 lbf/in is a -2% error.∆2 = −258 ft-lbf/◦ is also a -2% error. The error at

the center point should be smaller in magnitude than the error near the boundaries ofDd
ε if

it is indeed quadratic, as can be seen in Figure 3.12.

After the construction of a linear approximation, the IDT proceeded with optimization

over the reduced set of non-linear design variables. A few additional function evaluations

are used to verify the results of the optimization, which begins at the corner of the search

space where the extremum is expected. The calculated extrema in bending and torsional

stiffness achievable by designs~d ∈ Dd
ε are shown in Table 4.4. For this example the extrema

in bending and torsional stiffness found for both resolutions using a fractional precision of 1

occurred at the same design~d. Hence the results for prec= 1 are shown together. Extrema

are not expected to coincide, in general. Despite the differences in accuracy of the linear

approximations constructed, the same extrema were found for the two resolutions. There

is, however, an issue of reliability and confidence: the approximation obtained through the

resolution IV experiment is more complete and more points were evaluated to verify its

accuracy. The additional function evaluations buy a degree of confidence in the validity of

the results even though they are numerically identical.
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prec= 1 prec= 0.01
III IV III IV

approximation 41 53 33 53
bending optimization 2 2 58 58

total 43 55 91 111

approximation 41 53 33 53
torsion optimization 2 2 37 37

total 43 55 70 90

Table 4.5 Number of function evaluations required by the IDT.

To verify the extrema found, the fractional precision was reduced to 0.01. This tight-

ened the criteria for acceptable linearity in a design variable such that all design variables

became unacceptable. Optimization searched for extrema without any of the enhancements

described in Chapter 3 that seek to minimize the number of function evaluations required.

The results were again independent of the resolution specified. The extrema returned for

torsional stiffness were identical. A new maximum bending stiffness was located at an

intermediateB pillar location of 1.3 inches aft. The increase inKB was tiny: 55 lbf/in

(the new maximum bending stiffness was 97,000 lbf/in). The torsional stiffness at this new

maximum of bending stiffness is shown in italics.

An important consideration is the number of function evaluations required to obtain a

given reliability or accuracy in the calculated results. The number of function evaluations

for the four combinations of resolution and fractional precision evaluated are shown in

Table 4.5. The number of function evaluations required for ten variable resolution III and

IV central composite designs is 33 and 53 (from Figure 3.11). The additional eight points

evaluated in constructing a resolution III approximation forKB andKT were required to

verify the seven variable approximations. These verifying points, which define the eight

corners of a cube in the three non-linear variables, did not coincide with any of the 33

points evaluated in the resolution III central composite design. Table 4.5 shows that only

two additional evaluations were required by optimization when the fractional precision is

1, regardless of resolution, for bothKB andKT . This implies not that optimization only
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examined two points, but that the linear approximationf ′
j obviated the need to evaluate all

but two points. These two points correspond to the extrema found. This demonstrates that

the linear approximation methods described in Chapter 3 and implemented in the IDT are

effective at reducing the number of additional evaluations required by optimization.

The number of optimization evaluations required for a fractional precision of 0.01 do

not reflect the number of evaluations required by optimization alone. Although optimization

rejects the linear approximation and proceeds on all ten design variables, it begins at the

extrema predicted by the approximation. For torsional stiffness, optimization expends 37

function evaluations in order to determine that its starting points are indeed the correct

extrema, to a fractional precision of 0.01. For bending stiffness, optimization expends 58

evaluations in order to verify the minimum and to find a maximum that differs only in

B pillar location. Table 4.5 indicates the trade-off between fractional precision and the

number of function evaluations, for this particular example. There is no simple relationship

between the two. As the fractional precision is reduced, the IDT becomes more selective

in approximating~f , and more cautious in searching for extrema, with smaller step sizes

and more stringent termination criteria. This caution demonstrably results in more function

evaluations, but it is only suggested without proof that it results in better results.

It is difficult to assess the quality of the results when they are numerically virtually

identical. A difference inB pillar location of 0.7 inches resulting in a marginal increase in

bending stiffness is almost negligible. The apparent effectiveness of the methods developed

poses an intriguing question: if it is possible to obtain the correct answer with a resolution

III experiment and a fractional precision of 1 requiring only 44 function evaluations, why

would additional function evaluations be necessary? It has already been discussed that a

resolution IV experiment buys additional reliability and confidence in the results, and a

smaller fractional precision limits the allowable inaccuracy. Yet this example appears to

show that the central issue is not accuracy but confidence in the results, which is not easily

assessed.
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Figure 4.11 Quadratic bending stiffness.
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Figure 4.12 Quadratic torsional stiffness.
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4.2.2 Example: Quadratic Approximations to the Finite Element Analysis

An example involving closed-form equations for~f will further demonstrate the computa-

tional method. For this example, quadratic approximations in the two most poorly behaved

design variables were constructed for bending and torsional stiffness. These quadratic ap-

proximations was then used to calculateKB andKT instead of the finite element package.

The two design variables selected werecross-brace aread9 andB pillar location d10. The

approximations were constructed relative to the center point, in terms ofx9 andx10. The

acceptable intervals atα = ε specified forx9 andx10 were equivalent to those specified in

the previous example forcross-brace areaandB pillar location. The quadratic approxima-

tion for bending stiffness is plotted overDd
ε in Figure 4.11:

KB = 78, 400 + 170x9 − 240x10 − 630x9
2 − 5x9x10 − 88x10

2(4.1)

KB is significantly non-linear inB pillar location. ∂KB
∂x10

= 0 on a line from (-0.05,-1.36)

to (0.05,-1.36). This line defines a ridge on whichKB is a maximum for a given value

of cross-brace area. This ridge cannot be modeled by a linear approximation. The true

maximum ofKB on Dd
ε (78,600 lbf/in) is located at (0.05,-1.36). The minimum (77,600

lbf/in) is located at (-0.05,2).

The quadratic torsional stiffness is plotted in Figure 4.12:

KT = 13, 300 + 130x9 − 38x10 − 620x9
2 + 5x9x10 + 4x10

2(4.2)

The partial derivatives ofKT remain non-zero within the search space. The minimum

(13,230 ft lbf/◦) is at (-0.05,2). The maximum (13,400 ft lbf/◦) is at (0.05,-2).

The IDT was used to search for extrema at two fractional precisions: 1 and 0.01. For

two design variables, the full factorial experiment must be evaluated (all four corners of

theDd
ε rectangle): there is no choice between resolution III and resolution IV experiments.

The linear approximation results forKB andKT are given in Table 4.6. The correct linear

regression coefficients from Equations (4.1) and (4.2) were recovered. The offset∆1 is

relatively large and negative in order to correct for the concave downwards curvature of
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KB KT

cross-brace areaaj9 170 130
B pillar locationaj10 -240 -38

∆j -118 4.8

Table 4.6 Linear regression results for quadraticKB andKT .

prec= 1 prec= 0.01
pj

ε
min pj

ε
max pj

ε
max

cross-brace area -0.050 0.050 0.050
B pillar location 2.0 -2.0 -1.39

KB 77,600 78,500 78,600
KT 13,230 13,400 (13,370)

Table 4.7 Extrema for quadraticKB andKT .

KB . ∆2 is smaller in comparison and positive:KT is not strongly non-linear and is concave

upwards.

The extrema found by the IDT are shown in Table 4.7. The extrema found using the

linear approximation at a fractional precision of 1 coincided forKB andKT . At a fractional

precision of 0.01, optimization identified a maximum forKB at (0.05,-1.39). The value for

KB at (0.05,-1.39) was identical, within the floating point precision, to the true maximum

value ofKB . At a fractional precision of 0.01, only one variable,x10, was rejected as

not acceptably linear, for bothKB andKT . Errors for the linear approximations in both

variables (prec= 1) and in one variable (prec= 0.01) are given in Table 4.8 for each

evaluated point. Evaluated points are shown in Figure 4.13. AlthoughE(~d24 ) = 236 lbf/in

for KB is only a 0.3% error, the fractional precision is applied to the observed range inKB

(77,600–78,500 lbf/in). Hence for a fractional precision of 0.01, the maximum allowable

approximation error inKB is 0.01 × 900 = 9 lbf/in. Similarly E(~d−
10) = −11.2 ft lbf/◦ for

KT is only a 0.08% error, but0.01 × 170 = 1.7 ft lbf/◦.
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E(~d)
prec= 1 prec= 0.01

x9 x10 KB KT KB KT KB KT

~dctr 0 0 78,400 13,300 -118 4.8 -0.5 -0.5
~d21 -0.05 -2 78,500 13,380 236 -10.2 1.6 0.5
~d22 -0.05 2 77,600 13,230 235 -9.2 0.6 1.5
~d23 0.05 -2 78,500 13,400 235 -9.2 0.6 1.5
~d24 0.05 2 77,600 13,250 236 -10.2 1.6 0.5
~d−
9 -0.05 0 78,400 13,290 -116 6.3 1.1 1.0

~d+
9 0.05 0 78,400 13,310 -116 6.3 1.1 1.0

~d−
10 0 -2 78,500 13,390 234 -11.2

~d+
10 0 2 77,600 13,240 234 -11.2

Table 4.8 Approximation errors for quadraticKB andKT .
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Figure 4.13 Theα-cutDd
ε .
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Figure 4.14 Dd
ε mapped ontoP d

ε andP d′
ε .
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Figure 4.13 showsDd
ε , the design preferenceα-cut in the DVS. The factorial exper-

iment points are numbered. The actual and approximate mappings ofDd
ε onto the PVS

are shown in Figure 4.14. The solid lines indicate the boundary ofP d
ε . The pronounced

non-linearity ofKB in x10 results in a boundary that is not only curved, but also crosses

over itself. The maximum inKB occurs at (0.05,-1.36). The dashed lines connecting the

numbered factorial experiment points indicate the boundary ofP d′
ε , obtained via linear ap-

proximation. For this example, which was chosen to highlight the two most non-linear

design variables,P d′
ε is a poor approximation toP d

ε , especially near~d21 and ~d23 . The mis-

match betweenP d′
ε andP d

ε could be detected by checking if~p(~dctr), the performance of the

center point, is insideP d′
ε . Looking at Figure 4.14, it is tempting to suggest thatP d

ε could

be estimated by connecting the dots, but this is difficult to generalize ton design variables.

UsingP d2
ε = [p1

ε
min, p1

ε
max] × [p2

ε
min, p2

ε
max] would require no additional function evalu-

ations but would grossly overestimateP d
ε .

Where~f is sufficiently non-linear thatP d′
ε obtained via linear approximation is inade-

quate, effective methods to more accurately determine the geometry ofP d
ε have yet to be

developed within the method of imprecision. Nevertheless, this example shows that even

where variables are non-linear, the correct extrema can be located and linear approximation

can still be valuable in facilitating optimization.

4.3 Conclusions

The Imprecise Design Tool (IDT) was developed to verify the algorithms described in

Chapter 3 and to demonstrate the method of imprecision on engineering problems from

industry. Section 4.1 discussed an application of the IDT to the Engine Development Cost

Estimator (EDCE) provided by General Electric Aircraft Engines, Cincinnati, Ohio. The

EDCE estimates the cost of developing a new aircraft engine and is one of several programs

that together estimate the total lifetime cost of an engine. Eight variables that represent the

degree of innovation in eight components and subsystems of the new engine were chosen

to be design variablesd1, ..., d8. These variables are significantly imprecise: the degree of

innovation for a particular component of the engine will, in general, not be known precisely
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in advance. Additionally, because the EDCE defines degree of innovation only at ten levels,

d1, ..., d8 are effectively discrete.

The EDCE calculates the estimated development cost for a new engine given a set

of precisely specified, crisp inputs. The role of the IDT was to provide an interface that

quantified the imprecision in the design variablesd1, ..., d8 and the performance variable

p. The EDCE defined the crisp mappingf : DVS → PVS used by the IDT to perform

preference calculations.

This early version of the IDT traded-off preferences using the non-compensating aggre-

gation functionPmin. The resultingn-cubic combined design preferenceα-cutsDd
αk

were

mapped onto the PVS using a modified form of the LIA that made use of a lookup table for

values off(~d). Calculations demonstrated that specifyingα-cuts at ten levels of preference

was computationally inefficient and unnecessary.

An early solution to the problem of mappingY∗ back onto the DVS to obtainX ∗ used

the α-cut atα∗, the largestαk ≤ µ∗
o. For a non-compensating trade-off, the set of peak

preference designsX ∗ is a subset ofDd
α∗ because only design configurations~d ∈ Dd

α∗ can

have overall preferenceµo(~d) equal toµ∗
o.

Section 4.1.1 presented a turbofan aircraft engine development problem which involved

two (imprecisely specified) options:

1. Develop the new engine from an existing turbojet design by the addition of a front

fan with matching shaft and low pressure turbine.

2. Modify an existing, but dated, turbofan design.

The IDT was used to map design preferences onto the one-dimensional PVS. The specifica-

tion of a relative functional requirement for minimizing cost was shown to be problematic.

The usual calculation of overall preferenceµo(p) by aggregatingµd(p) andµp(p) requires

µp(p) to be defined as an absolute functional requirement. Instead, an informal method for

representing a purely relative preference on cost by comparing the trade-offs implied by

particular points on theµd(p) pyramid was described.

A later version of the IDT that replaced the LIA with optimization demonstrated the

application of optimization to a design problem with discrete design variables. It was also
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shown that optimization was able to reduce the number of function evaluations, in one

particular case, from 128 to 38. A simpler calculation required 12 evalutions for both

methods.

Section 4.2 presented a more recent application of the IDT, to an automobile structure

design problem. Noise, vibration, and harshness (NVH) design is concerned with three

aspects of vibration: audible noise, tactile vibration, and subjective evaluations of safety,

comfort, and luxury based on perceived levels of noise and vibration. Measures of static

rigidity (bending and torsional stiffness) are indicators of perceived safety, comfort, and

luxury levels. Measures of dynamic response (modal frequencies and shapes) directly pre-

dict noise and vibration characteristics [12].

The body-in-white is the principal load-bearing structure of the vehicle consisting of

thin-walled parts welded, bolted, or glued together, including the windshield and rear win-

dow. At this particular U.S. automobile manufacturer, the static and dynamic response of

the body-in-white is calculated using a commercial finite element package. Two types of

finite element model are used: detailed and simplified. Simplified models reduce calcula-

tion time, yet each finite element calculation of static and dynamic response still requires

approximately 15 seconds [12]. Therefore, in applying the method of imprecision to this

problem, a key consideration was to minimize the number of function evaluations incurred.

The optimization and experiment design techniques described in Chapter 3 were developed

to address this issue.

In Section 4.2.1 the IDT was applied to a finite element model of the passenger com-

partment of a hypothetical four-door body-in-white. A commercial finite element analy-

sis package was used to calculate bending and torsional stiffnesses. Ten design variables

were defined including the gauges of key members and the fore-aft location of the B pillar.

The example not only illustrates the methods introduced in Chapter 3, but also attempts to

demonstrate their feasibility. The use of finite element models is not limited to automobile

structure design: they are widely used in industry. Detailed results for resolution III and IV

central composite experiment designs were presented. The largest known error in approxi-

mating bending stiffnessKB (acceptably linear variables only) was 6% for both resolutions.

For KB , the resolution III experiment identified seven acceptably linear variables and the
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resolution IV experiment identified nine acceptably linear variables. The largest known er-

ror in approximating torsional stiffnessKT was 7% for resolution III (seven variables) and

11% for resolution IV (all ten variables). BothKB andKT were overestimated near the ex-

terior of Dd
ε and underestimated near the center point. Errors were largely symmetric with

E(~d−
i ) ≈ E(~d+

i ). These errors suggest that all four linear approximations (KB , resolutions

III and IV, and KT , resolutions III and IV) were reasonably accurate. Furthermore, the

offsets∆j appeared to be effective in evening out errors such that no subset of the search

space was especially poorly approximated.

Calculated design sensitivities showed that for theα = ε design preference intervals

specified, bending stiffness was most sensitive to the design variablerocker gauge. Tor-

sional stiffness was most sensitive to the design variablesB pillar gauge(κε
21 = 1) and

rocker gauge(κε
26 = 0.922).

Optimization at fractional precisions of 1 and 0.01 found the same minima forKB and

KT on Dd
ε using experiment design information at both resolutions. The minima forKB

andKT coincidentally occurred at the same point in the DVS. Optimization at a fractional

precision of 1 found the same maxima forKB andKT on Dd
ε for both resolutions. These

maxima also occurred at a single point in the DVS. A maximum with a negligibly higher

value ofKB was found when the fractional precision was set to 0.01.

Comparing the number of function evaluations required for resolution III and IV exper-

iments and fractional precisions of 1 and 0.01 showed that, for this example, the results and

the number of function evaluations required for optimization were independent of resolu-

tion. Approximation was also shown to be effective in minimizing the number of additional

function evaluations required by optimization: for a fractional precision of 1, only two

additional function evaluations were required. Moreover, even a resolution III experiment

combined with a fractional precision of 1 resulted in calculated extrema that were extremely

close to the best extrema found. The apparent effectiveness of the methods developed poses

an intriguing question: if it is possible to obtain the correct answer with a resolution III ex-

periment and a fractional precision of 1 requiring only 44 function evaluations, why would

additional function evaluations be necessary? It was suggested in Chapter 3 that a resolution

IV experiment buys additional reliability and confidence in the results, and a smaller frac-
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tional precision limits the allowable inaccuracy. Yet this example appears to show that the

central issue is not accuracy but confidence in the results. Additional function evaluations

may find better extrema. A resolution IV experiment combined with a smaller fractional

precision, however, is less likely to miss the correct extrema.

In Section 4.2.2, the methods introduced in Chapter 3 for mappingα-cuts from the

DVS to the PVS were demonstrated on quadratic approximations to the bending and tor-

sional stiffnesses calculated by finite element analysis. The two most non-linear design

variablescross-brace areaandB pillar location were selected. Despite the non-linearity

of KB in B pillar location, the correct extrema were found when a fractional precision

of 0.01 was specified. Moreover, even for a fractional precision of 0.01,cross-brace area

was sufficiently linear to be approximated by~f ′. However, the geometry ofP d
ε was poorly

approximated byP d′
ε . Where ~f is sufficiently non-linear thatP d′

ε obtained via linear ap-

proximation is inadequate, effective methods to more accurately determine the geometry of

P d
ε have yet to be developed within the method of imprecision. Developing these methods

is an important goal for future research. Nevertheless, this example shows that even where

variables are non-linear, the correct extrema can be located and linear approximation can

still be valuable in facilitating optimization.

These results demonstrate that a selectively applied linear approximation can be surpris-

ingly effective in evaluating an example finite element model of an automobile body. Finite

element models are widely used in industry. The automobile structure design and aircraft

engine development examples represent two contrasting design problems from industry.

For the automobile structure the design variables were continuous; for engine development

cost they were discrete. For the automobile structure example there were two performance

variablesKB andKB; for the engine development example only development cost was

quantified. The verification of the algorithms for method of imprecision calculations on

realistic design problems is a key contribution of this thesis.
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Chapter 5

Interpreting Imprecision

Design preferencesµdi
and functional requirementsµpj were defined in Chapter 2. Yet

the specification of these preferences is significantly more difficult than defining what they

represent. Moreover, as will be discussed in this section, the form in which preferences

should be specified is dependent on the algorithms used.

5.1 Specifying Preferences

The algorithms described in Chapter 3 for mapping the combined design preferenceµd

from the DVS to the PVS rely on approximatingµd(~d) asα-cut setsDd
α1

, ...,Dd
αM

, defined

in Equation (3.5). This discretizes the preference functionµd(~d) into M preference levels

α1, ..., αM . MappingM α-cut sets instead of a continuous preference function leads to

a computationally tractable algorithm. But appropriate values forα1, ..., αM have not yet

been defined.

Recall from Section 3.3 that aggregating discretized individual design preferencesµd1 , ..., µdn

with an aggregation function other thanPmin creates additional level sets. These additional

level sets occur at intermediate preference levels corresponding to the aggregation of dis-

similar α. Hence if individual design preferences are discretized intoMI levels of prefer-

enceα1, ..., αMI
, then the combined design preference will be discretized intoMD levels,

whereMD ≥ MI . The following discussion applies equally to functional requirements

that are discretized into the sameMI levels of preferenceα1, ..., αMI
. The combined func-

tional requirement will then be discretized intoMP levels whereMP ≥ MI . MP is not



113

necessarily equal toMD.

The preference levelsα1, ..., αMI
for the individual design preferences are automati-

cally propagated through the aggregation functionP because of idempotency. The addi-

tional preference levels result fromP defined for the number of design variablesn op-

erating on heterogeneous combinations of the preference valuesα1, ..., αMI
. For the de-

sign preference aggregation example described in Section 3.3 withn = 2 design vari-

ables andMI = 3 levels of preference, three potentially distinct preference levels are

created:α1,2 = P(α1, α2), α1,3 = P(α1, α3), andα2,3 = P(α2, α3). Generalizing to ar-

bitrary n, there are four situations for which an intermediate preference levelαi,...,k where

αi < ... < αk would not be distinguished fromα1, ..., αMI
:

1. P is such thatP(αi, ..., αk) = αi, e.g., Pmin,

2. P is such thatP(αi, ..., αk) = αk, e.g., Pmax′ except whenαi ≈ 0,

3. αi is zero or sufficiently close to zero that annihilation and continuity require that

P(αi, ..., αk) ≈ αi,

4. P(αi, ..., αk) = αj by coincidence,αi < αj < αk.

Although it might seem that largerMI and hence finer discretization would lead to

more accurate calculations, there are two compelling reasons why fewerα-cuts may be

better. First, each additional level set required to describeµd(~d) must be separately mapped

onto the PVS, incurring additional function evaluations. Each additionalα-cut defined for

the individual design preferences potentially creates as many new level sets forµd(~d) as

there are new combinations ofα. Hence addingα-cuts, in general, increases computational

effort significantly faster than linearly.

Second, the accuracy with which design preferences are represented should not exceed

the accuracy with which they can be elicited, or the accuracy with which the results can

be interpreted. Design problems with fewer than four design variables and three perfor-

mance variables are unlikely to pose significant challenges for designers in industry. Yet

the single approximatedα-cut in the PVS shown in Figure 3.8, for four design variables

and three performance variables, illustrates the difficulty in visualizing multi-dimensional
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α-cut sets. Imagine three such regions nested in the three-dimensional PVS. Then imag-

ine the same three regions modified after aggregation withµp and mapped back onto the

four-dimensional DVS. There is insufficient motivation to calculate additionalα-cut sets

that will add information of diminishing value.

How many preference levelsα1, ..., αMI
should be defined and what values should be

specified? Since the computational algorithm requires individual design preference func-

tions µdi
to be discretized intoα-cut intervals[di

α1
min, di

α1
max], ..., [di

αMI
min , di

αMI
max ], the µdi

should be directly specified, by the designer, in terms of theseα-cut intervals. The prefer-

ence levelsα1, ..., αMI
should therefore be chosen to be meaningful to the designer. The

two most importantα-cut intervals are atα = 1, corresponding to ideal variable values,

andα = ε (0 < ε � 1), corresponding to barely acceptable variable values. A preference

of one indicates an ideal variable value. Theα-cut interval atα = 1 identifies the ideal

or target range of values for the variable. These values fully satisfy the considerations that

are represented by the preference function. A preference of zero indicates an unaccept-

able variable value, which can only produce an unacceptable design which fails to satisfy

the relevant considerations. An infinitesimal yet non-zero preferenceε indicates a barely

acceptable variable value. Theα-cut interval atα = ε identifies the largest acceptable

range of values for the variable. Values outside this range have zero preference and are thus

unacceptable.

The barely acceptableα-cut set defined by the combined design preference isDd
ε . Dd

ε

defines the set of designs that are acceptable with respect to design preferences,i.e., with re-

spect design considerations: the unquantified aspects of design performance not represented

by performance variables. This specifically excludes preferences arising from performance

considerations: the quantified aspects of performance represented by performance vari-

ables.Dd
ε includes all designs that are minimally acceptable relative to design preferences

only. Applying functional requirementsµpj will eliminate designs~d ∈ Dd
ε with unaccept-

able performances and identify a subset ofDd
ε that describes acceptable designs relative to

all specified preferences.

The infinitesimal preferenceε is a special case. It is the smallest value of preference

for which a usefulα-cut can be defined. Anα-cut atα = 0 would include the entire DVS.
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Additionally, anihilation and continuity ensure that aggregating a preference ofε with any

other preference values will result in an infinitesimal preference which is effectively equal

to ε: aggregations involvingε result inε. Intermediate preference levels that aggregate anα-

cut atα = ε with otherα-cuts, will have preference equal toε, i.e., no new preference level

is created. Indeed, given that new preference levels are created by aggregating dissimilarα-

cuts, monotonicity and idempotency ensure that there are no new preference levels created

betweenε = α1 and the second lowestα-cut preferenceα2. Preference levels belowα2

can only be generated by aggregation involving a preference less thanα2. The onlyα-cut

preference belowα2 is ε, and aggregations involvingε result inε. Thus defining anα-cut

atα = ε is computationally efficient.

A basic implementation of the method of imprecision would use only twoα-cutsα1 = ε

andα2 = 1. This requires the designer to specify acceptable intervals for each variable

which barely satisfy design and performance considerations, and ideal intervals for each

variable which fully satisfy design and performance considerations. These twoα-cuts have

been chosen as being the most naturally defined. The concept of a range of acceptable

values and a range of ideal values for a variable is not new to engineers in industry. It is

the careful specification of these ranges with respect to clearly identified design and perfor-

mance considerations, on design and performance variables, and the explicit calculation of

how they combine on the PVS and the DVS, that is innovative.

As discussed above, aggregation cannot create new preference levels betweenε and 1.

Mapping preferences between the DVS and the PVS also does not create new preference

levels. Although functional requirements can be specified as functions with continuous

preference, these functions are necessarily combined with design preferences that are rep-

resented simply as twoα-cuts atα1 = ε andα2 = 1. In the absence of design preference

information at intermediate levels of preference, calculated results are reliable only at pref-

erence levels near these two extremes. Therefore, it is assumed that functional requirements

are also specified only atα1 = ε andα2 = 1.

Specifying only twoα-cuts α1 = ε and α2 = 1 eliminates the difference between

aggregation functions. Aggregations involving the same preferenceαk returnαk by idem-

potency. All other aggregations involveε and result inε: these will be subsets of theα-cut
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atα1 = ε and need not be calculated. Relatively few function evaluations are required. All

design-appropriate aggregation functions reduce to the intersection of intervals, regardless

of weights. Thus approximating preferences as only twoα-cuts obviates the identification

of aggregation functions or even an aggregation hierarchy. Barely acceptable preference

intervalsα1 = ε and ideal intervalsα2 = 1 are simply intersected (separately for eachα)

to aggregate. Moreover, it is easier to specify a set of ideal and acceptable intervals than

a continuous functional requirement, and the results are more easily interpreted. Thus the

propagation of ideal and acceptable intervals can be used as a preliminary analysis of the

design problem in order to sketch the boundaries of the design space while also searching

for an ideal set of designs.

A more complete implementation would add an intermediateα-cut. A natural choice

would beα = 0.5. A preference of 0.5 lies halfway between unacceptable and ideal. Mem-

bership of 0.5 in a fuzzy set implies membership of 0.5 in its complement. Analogously, a

preference of 0.5 indicates a variable value that is equally well (or equally poorly) described

as ideal or as unacceptable. The designer or customer is neither satisfied nor dissatisfied.

Theα-cut interval atα = 0.5 identifies a neutral or indifferent range of values for the vari-

able. This implies that a preference above 0.5 expresses positive satisfaction, such that the

customer or designer considers the variable value to be desirable or better than the norm.

A preference below 0.5 expresses negative satisfaction,i.e., dissatisfaction, such that the

customer or designer considers the variable value to be undesirable or worse than the norm.

Thus the threeα-cuts can be characterized:

• α1 = ε indicates undesirable yet barely acceptable variable values,

• α2 = 0.5 indicates neutral or indifferent variable values,

• α3 = 1 indicates (desirable) ideal or target variable values.

As before, no new preference levels are created betweenα1 andα2 and any aggregation

involving α1 = ε results inε. Aggregations involvingα2 = 0.5 andα3 = 1, however, can

create new intermediate preference levels depending on the aggregation functionP. There-

fore, increasing the number ofα-cuts from two to three potentially increases the number

of design preference level sets and hence the computational effort, by more than 50%. The
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Figure 5.2 Aggregating threeα-cuts: level sets forµd = Pmax′(µd1 , µd2).
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number of new preference levels created depends on the form of the aggregation func-

tion P: the non-compensating trade-offPmin and the design-appropriate maximal trade-off

Pmax′ do not create intermediate preference levels; other aggregation functions do. Fig-

ure 5.2 shows the level sets that result from usingPmax′ to aggregate individual design

preferenceα-cuts at three levels:α1 = ε, α2 = 0.5, andα3 = 1. There aren = 2 design

variables. Although the combined design preference level set atα3 = 1 is not rectangu-

lar, no new preference levels are created. Figure 5.1 shows the level sets that result from

usingPΠ to aggregate the same individual design preferences. A new preference level at

µd = PΠ(0.5, 1) ≈ 0.7 is created. This intermediate level set describes the combined

preference where the individual design preferences are 0.5 for one design variable and 1

for the other. The effect of using a different aggregation functionP is to vary the height

of the intermediate level set between the limits defined byPmin (Figure 3.5) andPmax′

(Figure 5.2).

The number of potentially new intermediate preference levels is equal to the number

of unique (non-ordinal) combinations ofn preferences chosen from{α2, α3}, excluding

(α2, ..., α2) and(α3, ..., α3). There aren − 1 such combinations. Including the newα-

cut atα3 = 1 brings the total number of new preference levels ton: the increase inMD

and complexity grows linearly with the number of design variablesn. For the example

given above with two design variables, the thirdα-cut increases the maximum number of

preference levels from two to four (Figure 5.1). If there are eight design variables, however,

the increase is from two to ten: a fivefold jump in complexity. Adding furtherα-cuts exacts

an even stiffer penalty. The number of unique combinations ofn preferences chosen from

{α2, α3, α4}, excluding(α2, ..., α2) and(α3, ..., α3) is 1
2(n + 1)(n + 2) − 2. Hence the

total number of potentially new preference levels added by a fourthα-cut is 1
2n(n + 1).

For eight design variables, a fourthα-cut potentially adds 36 level sets to bring the total to

MD = 46.

Yet the proliferation of new preference levels brings the ability to reflect the effects of

different aggregation functions. The intermediate preference levels encode different trade-

offs between design variables that are not modeled in the simple twoα-cut implementation.

The thirdα-cut is necessary to fully implement the method of imprecision.
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5.2 A Scenario for Implementation

This section develops the electric vehicle design problem from Section 2.7 in order to

present a possible scenario for implementing the method of imprecision in an industrial

setting. The scenario is that the company produces a variety of electric vehicles based on a

common basic chassis. A new vehicle intended for short distances (less than 50 miles) is to

be developed. The vehicle will be used within the neighborhood and for commuting mod-

erate distances. It is assumed that recharging will be available at home and at work. The

vehicle will be a four-door compact able to seat four adults or two adults and three chil-

dren. Target buyers are under 40, environmentally conscious, suburban or city residents,

male or female, with household incomes between $30,000 and $100,000. To begin with,

a preliminary analysis of the design problem is required. Such a preliminary analysis can

be provided by a minimal implementation of the method of imprecision which uses design

preference and functional requirementα-cuts at only two levels,ε and 1, as discussed in

Section 5.1.

The first step is to identify design and performance variables. Design variables are the

attributes under active consideration that distinguish alternatives that are to be evaluated

separately. Performance variables are those aspects of design performance that are to be

quantified. The means of evaluatingpj = fj(~d) should also be defined. Given that this is a

new variant in a family of similar electric vehicles, these evaluation tools should be readily

available. The performance considerations that will be represented by functional require-

ments on the performance variables and the design considerations that will be represented

by design preferences on the design variables must be identified. The design considerations

for this problem were discussed in Section 2.7. Performance considerations are typically

obviously related to the performance variables.Rangeandcost require little explanation.

The customer’s preferences on these variables are direct and do not need to be interpreted.

Because it is widely reported and frequently the only numerical measure of vehicle per-

formance that the customer is aware of,0–60 timehas particular significance.Weight is

a measure of the efficiency of the design that impacts vehicle handling.Bending stiffness

KB andtorsional stiffnessKT are indicators of NVH performance [12], as well as vehicle

handling.
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The next step is to specify individual design preference and functional requirement

intervals atα1 = ε andα2 = 1. These correspond to the two separate ranges of barely

acceptable and ideal values:

• for the design variables based on appropriate design considerations, and

• for the performance variables based on appropriate performance considerations.

For such a minimal implementation, then-cubic combined design preferenceα-cutsDd
ε and

Dd
1 fully describeµd(~d). No non-n-cubic α-cuts at intermediate preferences are created.

Experiment design is used to calculate regression coefficients for~f on Dd
ε and construct

a linear approximation~f ′ in acceptably linear variables. The evaluated points and~f ′ are

selectively applied to facilitate optimization and to calculate the full geometry of the ap-

proximate combined design preferenceα-cuts on the PVSP d′
ε andP d′

1 . P d′
ε andP d′

1 are

then intersected with the combined functional requirementα-cutsP p
ε andP p

1 to obtain the

α-cut representations ofµo(~p). Aggregation is reduced to the intersection of intervals sep-

arately atα = ε andα = 1. The results of this first calculation are two approximateα-cut

sets atε and 1 that indicate the acceptable and ideal performances based on the complete set

of specified preferences. It is possible, even probable, that theα-cut set at a preference of

1 is the empty set,i.e., there are no performances that simultaneously achieve ideal values

for all design and performance variables. Examination ofP d′
1 andP p

1 may indicate which

functional requirements are not fully satisfied. If theα-cut set at a preference ofε is also the

empty set, then some adjustment of the originally specified preferences is necessary since

no acceptable performances exist.

The discussion has, so far, referred to a single designer. Design problems are typically

solved by design teams. Different team members will have different areas of expertise as

well as different opinions and preferences. Furthermore, group decision-making in design

tends to involve bargaining or negotiation [55]. Negotiation is not easily formalized in a

design methodology. The relative power, authority, and expertise of the parties involved

is amenable neither to formal modeling nor to explicit expression. It is not suggested that

the method of imprecision can perform the trade-offs between the differing preferences of

team members on the same variable. It is even problematic to suggest that the method
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be used as a common framework to resolve the different preferences expressed by team

members on their particular segments of the design. Bargaining would be manifested in

the lowballing or highballing ofα-cut intervals. The form of the aggregation hierarchy and

relative importance weightings would also be subject to negotiation.

One alternative would be to appoint a single facilitator, who would need to have enough

authority and experience to weigh the different opinions of the team members. Construct-

ing the method of imprecision model would be the responsibility of the facilitator, but the

preferences specified and the aggregation hierarchies identified would be those of the de-

sign team. In this way, the resolution of conflicting opinions remains an informal process,

even though it falls principally on the shoulders of one person: the facilitator. Yet this may

discourage extreme bargaining behavior: extreme opinions risk being dismissed by the fa-

cilitator. Borrowing from the idea of pendulum arbitration, this could be formalized by

requiring the facilitator to choose only one side at a time to revise its opinions towards pro-

ducing a set of designs that are acceptable for all team members. Lowballing or highballing

increases the chance of being chosen. There is thus an incentive to submit information that

is realistic instead of exaggerated, as well as a mechanism for building consensus. For large

groups, several participants could be required to revise their opinions during each iteration,

instead of just one.

For the implementation scenario presented, this form of arbitrated iteration would be

used to determine a set of collectively specified preferences that intersect to give a non-

empty set of acceptable performances. It may even be possible to further modify prefer-

ences until a non-empty set of ideal performances is found. These preliminary calculations

are best performed at minimal levels of accuracy, since it is only necessary to establish

whether a non-empty set of of performances exist at preferences ofε and 1. Once such a

set has been shown to exist, it can be more precisely determined.

The next step is to map the combined functional requirement onto the DVS. This relies

on the linear approximation~f ′ constructed for the forward mapping of design preferences

onto the PVS. The approximate combined functional requirementα-cuts on the DVSDp′
ε

andDp′
1 obtained are then intersected with the combined design preferenceα-cutsDd

ε and

Dd
1 . The final results of this backwards calculation are two approximateα-cut sets atε
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and 1 that indicate the barely acceptable and ideal designs based on the complete set of

specified preferences. These overall preferenceα-cut sets in the DVS correspond to the

overall preferenceα-cut sets in the PVS. The shape of these sets indicate the full range of

acceptable designs, a restricted range of ideal designs, and the performances achievable by

each set of designs. Particular designs~d on the boundaries of theα-cut sets in the DVS

will have been evaluated and hence can be matched to their corresponding performances

~p = ~f(~d).

The purpose of this preliminary analysis is to construct a basic model of the design

problem with design and performance variables explicitly related to design and perfor-

mance considerations, and to settle on a set of acceptable and ideal intervals that intersect

to produce at least a non-empty set of acceptable designs and performances, and possibly

also a non-empty set of ideal designs and performances. Theα-cut overall preference sets

at ε demarcate the limits of the possible designs and performances as in Toyota’s design

and development process [63]. These boundaries can be communicated to downstream

engineering groups in order to facilitate concurrency in the design engineering process.

Moreover, if non-empty sets of ideal designs and performances exist, these can provide

additional information. The method of imprecision can provide not only set-based infor-

mation, but set-based information that distinguishes more than one level of preference.

The next stage of the design will require a more precise analysis. The purpose is now

to refine the set of possible designs by evolving a more precise set of preferences that

distinguish promising designs. Moving from the minimal twoα-cut implementation of

the method of imprecision to the more complete threeα-cut implementation (Section 5.1)

requires the determination of design preference and functional requirement aggregation hi-

erarchies. The design preference hierarchy is shown in Figure 2.3 and has already been dis-

cussed. The functional requirement hierarchy is shown in Figure 5.3.Bending stiffnessKB

and torsional stiffnessKT are both frame parameters and are naturally grouped together.

They do not compensate strongly for each other because they measure two different modes

of the vehicle’s dynamics that together determine vehicle handling and perceived comfort

and quality. Range, cost, and0–60 timeare performance variables of direct interest to the

customer that can be traded-off with a high degree of compensation. They are labeled as
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Figure 5.3 Functional requirement aggregation hierarchy for an electric vehicle
design.
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“desirables.” All the possible trade-offs among these three variables that increase one or

more preferences but reduce the others yield marketable vehicles: a slow, short range, but

cheap vehicle; an expensive, slow, but long range vehicle; an expensive, short range, but

fast vehicle; an even more expensive, but fast and long range vehicle,etc. A fully com-

pensating trade-off (c = 1) is specified.Weightis less easily located in the hierarchy. It is

neither directly of interest to the customer, nor is it purely a frame parameter. A difficulty is

that the most obvious consequences ofweightarerangeand0–60 time, which are already

performance variables. The performance considerations that remain forweightare design

efficiency and vehicle handling. SinceKB andKT are better measures of vehicle handling,

weightbecomes a surprisingly unimportant performance variable, with a global importance

weight of 0.09. In comparison,costandrangehave global weights of 0.28 each,0–60 time

has a global weight of 0.14, andKB andKT each have global weights of 0.105.

The degree of compensationc is difficult to specify, partly because the parameterk in

Equation (2.10) that definesPc has not been determined. Without a value fork, only three

values ofc are pinned down:c = 0 is non-compensating,c = 1 is fully compensating, and

c = 2 is maximally (super-) compensating. Yet even without a complete definition ofPc, a

more systematic method of specifyingc can be developed.

Figure 5.4 shows individualα-cut intervals ind1 andd2 being aggregated byPc. The

design considerations represented byµd1 are more important than those represented byµd2

and henceω1 > ω2. It is apparent thatPc((1, ω1), (0.5, ω2)) > Pc((0.5, ω1), (1, ω2)):

ideal values ofd1 matched with neutral values ofd2 are preferred to neutral values ofd1

matched with ideal values ofd2. This is consistent withµd1 being more important than

µd2 . The preference levelsPc((1, ω1), (0.5, ω2)) andPc((0.5, ω1), (1, ω2)) are determined

by Pc, or more specifically the degree of compensationc. Thus choosing the degree of

compensation is, for this threeα-cut implementation, equivalent to choosing the preference

levelsPc((1, ω1), (0.5, ω2)) andPc((0.5, ω1), (1, ω2)). This can be framed in terms of two

questions:

• If d1 is ideal andd2 is neutral, what is your combined preference?

• If d1 is neutral andd2 is ideal, what is your combined preference?
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Figure 5.4 Aggregating threeα-cuts with weights,ω1 > ω2.

These two questions are not independent because only one degree of compensation can be

specified. Furthermore, it is necessary to keep in mind the pivotal values of preference given

by Pc=0 = Pmin, Pc=1 = PΠ, andPc=2 = Pmax′ . Pc=0(0.5, 1) = 0.5 andPc=2(0.5, 1) =

1: these functions are independent of weights. Thus the extremes of compensation are

clearly given. But as is discussed in Section 2.5, supercompensating values ofc > 1

imply a willingness to trade-off small gains in one preference for large losses in another.

They are thus not suitable for typical design problems, despite satisfying the axioms for

design-appropriateness. For most problems, the limits ofc are zero (Pmin) and one (PΠ).

Pc=1((0.5, ω1), (1, ω2)) andPc=1((1, ω1), (0.5, ω2)) depend on the ratio ofω1 to ω2 and

are not equal unlessω1 = ω2. It is also not intuitively obvious what their values are.

For ω1 = ω2, Pc=1((0.5, ω1), (1, ω1)) = 0.71. Thus if the degree of compensation is

to be determined using this procedure, it is important to evaluatePc=1((0.5, ω1), (1, ω2))

andPc=1((1, ω1), (0.5, ω2)) in order to pin down the extreme of full compensation. The

preference levelsPc((1, ω1), (0.5, ω2)) andPc((0.5, ω1), (1, ω2)) that determinec can then

be chosen relative toPc=0 andPc=1. This is still an informal and approximate procedure,
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Figure 5.5 Overall preference aggregation hierarchy.

but it is an improvement over direct estimation.

After the design preference and functional requirement aggregation hierarchies have

been defined, one final aggregation operation needs to be specified:µ̂o = P̂c((µd, ωd), (µp, ωp)).

The combined design preference and the combined functional requirement must themselves

be aggregated into the overall preference. Since functional requirements represent perfor-

mance considerations which are important enough to be quantified as performance vari-

ables,µp is expected to be more important thanµd. The complete preference aggregation

hierarchy is shown in Figure 5.5. The relative weights of 0.4 for the combined design pref-

erence and 0.6 for the combined functional requirement were chosen to appropriately scale

the global weights associated with particular design and performance variables.

The aggregation of individual preferences into the overall preference is now fully de-

fined. Through the arbitration procedure described above, or otherwise, individual design

preference and functional requirement intervals atα1 = ε, α2 = 0.5, andα3 = 1 are spec-

ified. The discretized design preferences are aggregated via the design preference aggrega-
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tion hierarchy. The combined design preferenceα-cuts obtained are then mapped onto the

PVS using the methods described in Chapter 3, some of which were demonstrated in Chap-

ter 4. The individual functional requirements are aggregated via the functional requirement

aggregation hierarchy into the combined functional requirementµp(~p). µd(~p) andµp(~p)

are then combined via the final aggregation operation shown in overall preference aggrega-

tion hierarchy. The results of this forward calculation areα-cut approximations toµo(~p),

the overall preference on the PVS. Theseα-cut sets indicate the multi-dimensional perfor-

mances (range, cost, 0–60 time, weight, KB , andKT ) that are achievable by designs at the

three principal levels of overall preferenceε (acceptable), 0.5 (neutral), and 1 (ideal), as

well as intermediate levels of preference between 0.5 and 1 that indicate desirable designs

that trade-off neutral and ideal preferences.

The backward calculation requires reversing the mapping~f : DVS → PVS using the

linear approximation~f ′. The combined functional requirement is mapped onto approximate

α-cuts in the DVS and theseα-cuts are aggregated with the combined design preference via

the same overall preference aggregation operation as for the forward calculation. Theα-cut

sets obtained approximateµo(~d), the overall preference on the DVS. Theseα-cuts indicate

the sets of designs that correspond to the principal overall preference levelsε (acceptable),

0.5 (neutral), and 1 (ideal), as well as intermediate overall preference levels between 0.5

and 1 that indicate designs that trade-off neutral and ideal preferences.

5.3 Conclusions

The specification of design preferencesµdi
and functional requirementsµpj is significantly

more difficult than defining what they represent. Moreover, the form of these specified

preferences is dependent on the algorithms used. The algorithms described in Chapter 3 for

mapping the combined design preferenceµd from the DVS to the PVS rely on approximat-

ing µd(~d) asα-cut setsDd
α1

, ...,Dd
αMI

. This discretizes the preference functionµd(~d) into

MI preference levelsα1, ..., αMI
.

Aggregating discretized preference functions with an aggregation function other than

Pmin creates additional non-n-cubic level sets (Section 3.3). Although it might seem that



128

finer discretization would lead to more accurate calculations, there are two compelling rea-

sons why fewerα-cuts may be better.

1. Each additional level set required to describeµd(~d) must be separately mapped onto

the PVS, incurring additional function evaluations. Each additionalα-cut defined for

the individual design preferences potentially creates as many new level sets forµd(~d)

as there are new combinations ofα.

2. The accuracy with which design preferences are represented should not exceed the

accuracy with which they can be elicited, or the accuracy with which the results can

be interpreted. The difficulty of visualizing even oneα-cut set in a four-dimensional

DVS suggests that calculating additionalα-cut sets will only add information of di-

minishing value.

The two most importantα-cut intervals are atα = 1, corresponding to ideal variable

values, andα = ε (0 < ε � 1), corresponding to barely acceptable variable values. The

α-cut interval atα = 1 identifies the ideal or target range of values for the variable. A

preference of zero indicates an unacceptable variable value, which can only produce an

unacceptable design which fails to satisfy the relevant considerations. An infinitesimal yet

non-zero preferenceε indicates a barely acceptable variable value. Theα-cut interval at

α = ε identifies the largest acceptable range of values for the variable. Anihilation and

continuity ensure that aggregating a preference ofε with any other preference values results

in an infinitesimal preference which is effectively equal toε. Monotonicity and idempo-

tency ensure that aggregation cannot create new preference levels betweenα1 = ε and the

second lowestα-cut preferenceα2. Thus defining anα-cut atα = ε is computationally

efficient.

A basic implementation of the method of imprecision suitable for preliminary analyses

would use only twoα-cutsα1 = ε andα2 = 1. No new preference levels can be created

betweenε and 1 and the difference between aggregation functions is eliminated: aggre-

gation is reduced to the intersection of intervals. It is unnecessary to identify aggregation

functions or even an aggregation hierarchy. Both design preferences and functional require-

ments are represented as acceptable and ideal intervals. Such an implementation requires
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relatively few function evaluations. Moreover, it is easier to specify a set of ideal and ac-

ceptable intervals than a continuous functional requirement, and the results are more easily

interpreted.

A more complete implementation would use threeα-cuts:

• α1 = ε indicates undesirable yet barely acceptable variable values.

• α2 = 0.5 indicates neutral or indifferent variable values.

• α3 = 1 indicates (desirable) ideal or target variable values.

As before, no new preference levels are created betweenα1 andα2 and any aggregation

involving α1 = ε results inε. The number of potentially new intermediate preference lev-

els, i.e., the number of unique (non-ordinal) combinations ofn preferences chosen from

{α2, α3} excluding (α2, ..., α2) and (α3, ..., α3), is n − 1. Including the newα-cut at

α3 = 1 brings the total number of new preference levels ton: the increasein complexity

grows linearly with the number of design variablesn. For eight design variables the maxi-

mum number of preference levels increases from two to ten: a fivefold jump in complexity.

Adding furtherα-cuts exacts an even stiffer penalty. The total number of potentially new

preference levels added by a fourthα-cut is 1
2n(n + 1).

Yet the new preference levels that accompany the thirdα-cut also bring the ability to

model different aggregation functions. The intermediate preference levels encode different

trade-offs between design variables that are ignored in the basic twoα-cut implementation.

The thirdα-cut is necessary to fully implement the method of imprecision.

In Section 5.2 the electric vehicle design problem from Section 2.7 was used to present

a possible scenario for implementing the method of imprecision. The scenario involved

the development of a new variant in a family of electric vehicles based on a common basic

chassis. The steps described in implementing the method of imprecision as discussed in

this thesis are as follows:

1. Conduct a preliminary analysis of the design problem using a minimal implementa-

tion of the method of imprecision (MI = 2).
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(a) Identify design and performance variables and define the mappingsfj(~d). Iden-

tify design and performance considerations corresponding to each variable.

(b) Specify individual design preference and functional requirement intervals at

α1 = ε (acceptable) andα2 = 1 (ideal).

(c) Aggregate individual design preference intervals intoDd
ε and Dd

1 using the

Cartesian product.

(d) Use experiment design to calculate regression coefficients for~f on Dd
ε and

construct a linear approximation~f ′ in acceptably linear variables. Selectively

apply the evaluated points and~f ′ to facilitate optimization and to calculate the

full geometries of the approximate combined design preferenceα-cuts on the

PVSP d′
ε andP d′

1 .

(e) Aggregate individual functional intervals intoP p
ε andP p

1 using the Cartesian

product.

(f) IntersectP d′
ε andP d′

1 with the combined functional requirementα-cutsP p
ε and

P p
1 to obtain theα-cut representations ofµo(~p) at ε and 1: the acceptable and

ideal performances.

(g) If no acceptable performances exist or if acceptable or ideal performances are

otherwise not satisfactory, return to step 1(b)and revise the preferences speci-

fied.

(h) Use~f ′ to calculate theα-cutsDp′
ε andDp′

1 on the DVS, which approximate the

pre-images ofP p
ε andP p

1 , the combined functional requirementα-cuts on the

PVS.

(i) IntersectDp′
ε andDp′

1 with Dd
ε andDd

1 to obtain theα-cut representations of

µo(~d) at ε and 1: the acceptable and ideal designs.

(j) If the calculated sets of acceptable or ideal designs require adjustment, return

to step 1(b)and revise the preferences specified.

2. Perform a more precise analysis using a more completeMI = 3 α-cut implementa-

tion in order to refine the set of possible designs and identify promising designs.
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(a) Determine the design preference and functional requirement aggregation hier-

archies, and in particular importance weightings and degree of compensation

for aggregation operations.

(b) Determine the overall preference aggregation operationP̂c((µd, ωd), (µp, ωp)).

(c) Specify individual design preference and functional requirement intervals at

α1 = ε (acceptable),α2 = 0.5 (neutral), andα3 = 1 (ideal).

(d) Aggregate individual design preference intervals intoMD α-cuts Dd
ε ,Dd

0.5,

...,Dd
1 via the design preference aggregation hierarchy.

(e) Use experiment design to (re-)calculate regression coefficients for~f onDd
ε and

construct a linear approximation~f ′ in acceptably linear variables. Selectively

apply the evaluated points and~f ′ to facilitate optimization and to calculate the

full geometries of the approximate combined design preferenceα-cuts on the

PVSP d′
ε , P d′

0.5, ..., P
d′
1 .

(f) Aggregate individual functional requirement intervals intoMP α-cutsP p
ε , P p

0.5, ..., P
p
1

via the functional requirement aggregation hierarchy.

(g) AggregateP d′
ε , P d′

0.5, ..., P
d′
1 with the combined functional requirementα-cuts

P p
ε , P p

0.5, ..., P
p
1 to obtain anα-cut representation ofµo(~p). Theseµo(~p) α-cuts

indicate sets of performances at different levels of preference: barely accept-

able, neutral, ideal, and various levels between neutral and ideal.

(h) If no acceptable performances exist or if calculatedα-cuts performance sets are

otherwise not satisfactory, return to step 2(c)or step 2(a).

(i) Use ~f ′ to calculate theα-cutsDp′
ε ,Dp′

0.5, ...,D
p′
1 on the DVS, which approxi-

mate the pre-images ofP p
ε , P p

0.5, ..., P
p
1 , the combined functional requirement

α-cuts on the PVS.

(j) AggregateDp′
ε ,Dp′

0.5, ...,D
p′
1 with Dd

ε ,Dd
0.5, ...,D

d
1 to obtain anα-cut represen-

tation ofµo(~d). Theseµo(~d) α-cuts indicate sets of designs at different levels of

preference: barely acceptable, neutral, ideal, and various levels between neutral

and ideal.



132

(k) If the calculatedα-cut sets of designs require further refinement, return to

step 2(c) or step 2(a).

The difficulty of determining the degree of compensationc for aggregation operations

in steps 2(a) and 2(b) was discussed in the context of the threeα-cut implementation intro-

duced in Section 5.1. An informal procedure for exploring the choice ofc relative to the

aggregation functionsPc=0 = Pmin, Pc=1 = PΠ, andPc=2 = Pmax′ was presented.

For group decision-making, specifying preferences (1(b) and 2(c)) and determining the

aggregation hierarchies (2(a) and 2(b)) subject to bargaining or negotiation. One suggested

solution is to appoint a facilitator, who would weigh the opinions of the members of the

design team in determining preferences and aggregation hierarchies. Whenever preferences

or hierarchies need to be modified, the facilitator should be required to choose only one

participant’s opinions for revision. For large groups, several participants could be chosen

for each iteration. This provides an incentive to submit information that is realistic instead

of exaggerated, as well as a mechanism for building consensus.
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Chapter 6

Conclusions

If a man will begin with certainties, he will end with doubts; but if he will be

content with doubts, he shall end in certainties.

Sir Francis Bacon(1561–1626), “Advancement of Learning” Bk. 1

What I tell you three times is true.

Lewis Carroll (1832–1898), “The Hunting of the Snark”

The method of imprecision represents design imprecision through the customer’s pref-

erences on relevant aspects of design performance.

• Functional requirements model the customer’s direct preference on performance vari-

ables based onperformance considerations: the quantified aspects of design perfor-

mance represented by performance variables.

• Design preferences model the customer’s anticipated preference on design variables

based ondesign considerations: the unquantified aspects of design performance not

represented by performance variables.

The precise differentiation between design and performance variables, between design pref-

erences and functional requirements, and between design and performance considerations,

is the first key contribution of this thesis. The innovation in distinguishing design consid-
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erations is that it provides a clearly defined formal structure for representing “soft” issues

such as aesthetics and manufacturability and quantifying their consequences.

In Section 2.5, a class of aggregation functions were defined using the weighted root-

mean-power family of functions. This family of aggregation functions, which represent

the model decision-maker in the method of imprecision, allow a broad range of degrees of

compensation and satisfy postulated axioms for rational design decision-making. They per-

mit attributes to be weighted in importance and they support hierarchical aggregation. Thus

to answer French’s second question, provided that the axioms of design-appropriateness

adequately reflect the decision-maker’s notion of rationality, the method of imprecision can

allow the decision-maker to define an aggregation hierarchy that acceptably models how

the decision-maker might actually trade-off preferences. The method of imprecision seeks

to guide the designer in creating a model decision-maker that accurately reflects the design

decision while embodying appropriate canons of rationality for engineering design.

The electric vehicle example in Section 2.7 demonstrated the modeling of a design prob-

lem, and in particular the process of identifying design variables, performance variables,

and design considerations and constructing the design preference aggregation hierarchy.

The elucidation of this process is the second key contribution of this thesis.

The feasibility of the process of identifying design considerations and constructing the

design preference aggregation hierarchy was demonstrated for an electric vehicle design in

Section 2.7. The process of enumerating design considerations, explicitly relating design

considerations to design variables, constructing a hierarchy, determining relative impor-

tance and degree of compensation in aggregation, and examining the resulting model, was

in itself a valuable exercise. The careful analysis of how the design variables impact design

considerations clarified many important issues. Thus in reply to French’s third question,

it is suggested that the process of constructing the method of imprecision model is not

only feasible and informative, but also requires the designer to more clearly distinguish and

explicitly quantify the beliefs and preferences that are to be modeled.

In the method of imprecision, design preferencesµdi
are specified on design variables

and functional requirementsµpj are specified on performance variables. Individual design

preferencesµdi
(di) are aggregated into the combined design preferenceµd(~d), and individ-
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ual functional requirementsµpj(pj) are aggregated into the combined functional require-

mentµp(~p). The aggregation of these combined preferences into the overall preferenceµo

is complicated by the need to map preferences between the DVS and the PVS:

• The combined design preference must be mapped toµd(~p) on the PVS to obtain

µo(~p) = P(µd(~p), µp(~p)).

• The combined functional requirement must be mapped toµp(~d) onto the DVS to

obtainµo(~d) = P(µd(~d), µp(~d)).

Previously, design preferences were mapped onto the PVS using the Level Interval Algo-

rithm (LIA). The LIA has four important limitations:

1. Theα-cutsDd
αk

must ben-cubes, which is accurate only for aggregation byPmin.

2. The performance variable endpointspj
αk
min andpj

αk
max calculated are only correct un-

der certain conditions: in practice these require thatfj be monotonic.

3. The endpoints obtained only indicate extremal points onP d
αk

, the combined design

preferenceα-cut in the PVS: the full geometry ofP d
αk

is not determined.

4. Up to 2n function evaluations are required to evaluate eachα-cut, a number that

quickly becomes prohibitive as the number of design variablesn increases.

The primary limitation of the LIA, that it requires monotonicity, may be removed by refor-

mulating the problem as a constrained optimization.

In order to address the issue of robustness as well as limitations 1 and 3, an approxi-

mation ~f ′ for ~f : DVS → PVS is constructed overDd
ε (theα-cut at infinitesimalα = ε).

Obtaining a linear approximation~f ′ fulfills four purposes:

1. It removes acceptably linear design variables from the search space for optimization.

2. It supplies a global approximation to~f overDd
ε for determining the geometry ofP d

αk

between extremal points.

3. It enables the calculation of design sensitivitiesκαk
ji .
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4. It provides a computationally tractable, albeit approximate, means to map the com-

bined functional requirement from the PVS onto the DVS.

The mapping ofDd
αk

onto the PVS does not depend entirely upon the accuracy of the linear

approximation~f ′. The shape ofP d
αk

in the PVS is estimated by obtaining extremal points

in eachpj via optimization (facilitated by linear approximation), and then interpolating the

bounding edges between points using~f ′. The linear approximation~f ′ furnishes additional

information about the shape ofP d
αk

away from extremal points that would otherwise be un-

available.~f ′ is used to provide approximate information not to replace precise information,

but to replace a lack of information.

The linear approximation~f ′ over Dd
ε is obtained using techniques adapted from ex-

periment design. The combined use of experiment design to explore the design space and

optimization assisted by linear approximation to map preferences is the third key contribu-

tion of this thesis. Using experiment design to obtain a linear regression model is efficient

in function evaluations, does not require advanced statistical techniques, and is well-suited

to computer implementation. Experiment design evaluates a balanced set of points in the

search spaceDd
ε in order to characterize~f and construct~f ′. The likely location of the

global minimum is chosen as the starting point for optimization.

The fourth key contribution of this thesis is the provision of a fractional precision that

permits the designer to trade-off the number of function evaluations against the quality of

the answer obtained. This adjustment allows the designer to use the same computer program

to obtain quick estimates as well as precise evaluations. The fractional precision determines

not only the tolerance of the optimization algorithm, but also the necessary conditions for

~f ′ to approximate~f sufficiently accurately in each design variabledi. Only sufficiently

linear variables are approximated for optimization. Optimization proceeds on~f over the

remaining non-linear variables.

The Imprecise Design Tool (IDT) was developed to verify the algorithms described in

Chapter 3 and to demonstrate the method of imprecision on engineering problems. Sec-

tion 4.1 discussed an application of the IDT to the Engine Development Cost Estimator

(EDCE) provided by General Electric Aircraft Engines, Cincinnati, Ohio. The EDCE es-

timates the cost of developing a new aircraft engine and is one of several programs that
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together estimate the total lifetime cost of an engine.

Section 4.1.1 presented a turbofan aircraft engine development problem which involved

two (imprecisely specified) options:

1. Develop the new engine from an existing turbojet design.

2. Modify an existing, but dated, turbofan design.

The IDT was used to map design preferences onto the one-dimensional PVS. The specifica-

tion of a relative functional requirement for minimizing cost was shown to be problematic.

A more recent application of the IDT, to an automobile body design problem, was pre-

sented in Section 4.2. Noise, vibration, and harshness (NVH) design is concerned with

three aspects of vibration: audible noise, tactile vibration, and subjective evaluations of

safety, comfort, and luxury based on perceived levels of noise and vibration. Measures

of static rigidity (bending and torsional stiffness) are indicators of perceived safety, com-

fort, and luxury levels. Measures of dynamic response directly predict noise and vibration

characteristics [12].

At this particular U.S. automobile manufacturer, the static and dynamic response of the

body-in-white is calculated using a commercial finite element package. Each finite ele-

ment calculation of static and dynamic response requires significant supercomputer time:

approximately 15 seconds to evaluate a simplified model [12]. Therefore, in applying the

method of imprecision to this problem, an important consideration was to minimize the

number of function evaluations incurred. The optimization and experiment design tech-

niques described in Chapter 3 were developed to address this issue.

In Section 4.2.1 the IDT was applied to a finite element model of the passenger com-

partment of a hypothetical four-door body-in-white. Bending and torsional stiffnesses were

calculated using finite element methods. Ten design variables were defined including the

gauges of key members and the fore-aft location of the B pillar. This example attempted to

demonstrate the feasibility of the methods introduced in Chapter 3.

Comparing the number of function evaluations required for resolution III and IV exper-

iments and fractional precisions of 1 and 0.01 showed that, for this example, the results and

the number of function evaluations required for optimization were independent of resolu-
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tion. Approximation was also shown to be effective in minimizing the number of additional

function evaluations required by optimization: for a fractional precision of 1, only two

additional function evaluations were required. Moreover, even a resolution III experiment

combined with a fractional precision of 1 resulted in calculated extrema that were extremely

close to the best extrema found. The apparent effectiveness of the methods developed poses

an intriguing question: if it is possible to obtain the correct answer with a resolution III ex-

periment and a fractional precision of 1 requiring only 44 function evaluations, why would

additional function evaluations be necessary? It was suggested in Chapter 3 that a resolution

IV experiment buys additional reliability and confidence in the results, and a smaller frac-

tional precision limits the allowable inaccuracy. Yet this example appears to show that the

central issue is not accuracy but confidence in the results. Additional function evaluations

may find better extrema. A resolution IV experiment combined with a smaller fractional

precision, however, is less likely to miss the correct extrema.

These results demonstrate that a selectively applied linear approximation can be surpris-

ingly effective in evaluating an example finite element model of an automobile body. Finite

element models are widely used in industry. The automobile body design and aircraft en-

gine development examples represent two contrasting design problems from industry. The

verification of the algorithms for method of imprecision calculations on realistic design

problems is the fifth key contribution of this thesis.

In Section 4.2.2, the methods introduced in Chapter 3 for mappingα-cuts from the

DVS to the PVS were demonstrated on quadratic approximations to bending and torsional

stiffness. Despite the pronounced non-linearity of bending stiffness, the correct extrema

were found when a fractional precision of 0.01 was specified. However, the geometry ofP d
ε ,

the combined design preferenceα-cutDd
ε mapped onto the PVS, was poorly approximated

by P d′
ε . Where ~f is sufficiently non-linear thatP d′

ε obtained via linear approximation is

inadequate, effective methods to more accurately determine the geometry ofP d
ε have yet to

be developed within the method of imprecision. Developing these methods is an important

goal for future research.

The specification of design preferencesµdi
and functional requirementsµpj is signifi-

cantly more difficult than defining what they represent. Moreover, the form of these speci-
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fied preferences is dependent on the algorithms used. The algorithms described in Chapter

3 for mapping the combined design preferenceµd from the DVS to the PVS rely on ap-

proximatingµd(~d) asα-cut setsDd
α1

, ...,Dd
αMI

.

Aggregating discretized preference functions with an aggregation function other than

Pmin creates additional non-n-cubic level sets (Section 3.3). Although it might seem that

finer discretization would lead to more accurate calculations, there are two compelling rea-

sons why fewerα-cuts may be better.

1. Each additional level set defined for the individual design preferences potentially

adds not just one new level set for the combined design preference, but as many new

level sets as there are new combinations ofα. Each new level set incurs additional

function evaluations.

2. The accuracy with which design preferences are represented should not exceed the

accuracy with which they can be elicited, or the accuracy with which the results can

be interpreted.

The two most importantα-cut intervals are atα = 1, corresponding to ideal variable

values, andα = ε (0 < ε � 1), corresponding to barely acceptable variable values. The

α-cut interval atα = 1 identifies the ideal or target range of values for the variable. The

α-cut interval atα = ε identifies the largest acceptable range of values for the variable.

Aggregating a preference ofε with any other preference values results in an infinitesimal

preference which is effectively equal toε. Aggregation also cannot create new preference

levels betweenα1 = ε and the second lowestα-cut preferenceα2. Thus defining anα-cut

atα = ε is computationally efficient.

A basic implementation of the method of imprecision suitable for preliminary analy-

ses would represent both design preferences and functional requirements as acceptable and

ideal intervals, thus reducing the procedure to the propagation and intersection of acceptable

and ideal intervals. It is unnecessary to identify aggregation functions or even an aggrega-

tion hierarchy. Relatively few function evaluations are required. Moreover, it is easier to

specify a set of ideal and acceptable intervals than a continuous functional requirement, and

the results are more easily interpreted.
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A more complete implementation would use threeα-cuts: α1 = ε (undesirable yet

barely acceptable),α2 = 0.5 (neutral or indifferent), andα3 = 1 (ideal or target). Up to

n new preference levels are created betweenα2 andα3. These intermediate levels allow

different aggregation functions to be modeled: they encode trade-offs between design vari-

ables that are ignored in the basic twoα-cut implementation. The thirdα-cut is necessary

to fully implement the method of imprecision.

For group decision-making, specifying preferences and determining a preference ag-

gregation hierarchy are subject to bargaining or negotiation. One suggested solution is to

appoint a facilitator, who would weigh the opinions of the members of the design team in

order to construct the method of imprecision model. Whenever preferences or hierarchies

need to be modified the facilitator should be required to choose only one participant’s opin-

ions for revision. For large groups, several participants could be chosen for each iteration.

This provides an incentive to submit information that is realistic instead of exaggerated, as

well as a mechanism for building consensus.

A theory for representing and evaluating design precision is incomplete without feasi-

ble and efficient computational algorithms. Computational algorithms must be verified on

realistic problems. Yet even a methodology complete with efficient computational algo-

rithms that have been verified on design problems from industry is still incomplete without

practical procedures for implementation. The procedures described in Section 5.1, which

are an essential step towards bringing the method of imprecision to design problems in in-

dustry, are the sixth key contribution of this thesis. These procedures reduce the abstract

mathematics of representing preference to readily understood acceptable, neutral, and ideal

intervals and allow for both preliminary and detailed analyses. Moreover, through an in-

formal arbitration procedure for determining preferences and aggregation hierarchies, the

difficult but ever-present problem of bargaining can be addressed. An effective means to

control bargaining behavior is a prerequisite for applying the method of imprecision to

support group design decisions.

In Section 5.2 the electric vehicle design problem from Section 2.7 was used to present

a possible scenario for implementing the method of imprecision. The scenario involved

the development of a new variant in a family of electric vehicles based on a common basic
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chassis. The full treatment of the electric vehicle example in Sections 2.7 and 5.2 ad-

dresses French’s first question by demonstrating that an aggregation hierarchy of explicitly

defined design and performance considerations is capable of modeling imprecision for a

realistic design problem. The example is intended to reflect the detail that is often difficult

to model formally, but is an intrinsic part of real design problems. The flexibility of the

model decision problem postulated by the method of imprecision enables these details to

be represented in a formal decision-making methodology.
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Appendix A

Approximation by Tiling

This section presents an alternative method for approximating~f : DVS → PVS that was

ultimately shown to be impractical. The quadratic example presented in Section 4.2 high-

lights a basic deficiency in approximating~f as a linear mapping. Yet a quadratic approxi-

mation introduces curved surfaces that would be difficult to calculate and to interpret. An

alternative is a piecewise linear approximation.

The idea was to successively partitionDd
ε into n-cubic tiles. A design variabledi that

was not acceptably linear would be approximated by multiple tiles in thedi direction. A

linear approximation would be constructed on each tile. This is a type of branch-and-bound

scheme [59]. The quadratic bending stiffness shown in Figure 4.11 could be approximated

by two such tiles, as shown in Figure A.1. Tiling preserves some of the simplicity of linear

approximations while allowing the function to exhibit internal extrema.

Figure A.1 does not show the many potential problems with constructing a tiled lin-

ear approximation. TheKB surface is not significantly skewed or twisted. For less well

behaved functions, linear approximations on adjacent tiles may be misaligned, leading to

discontinuities near each end of the shared edge (Figure A.2). Extrema will in general not

be aligned with any particular variable direction and thus the boundary between twon-

cubic tiles will not accurately follow the ridge or trough in the function. Tiles should be

n-cubes in order to simplify the construction of linear approximations on each tile using

experiment design, and also because allowing sloping boundaries would introduce signif-

icant complexity into the algorithm. If the linear approximations are not to be constructed
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usingn-cubic experiment designs, then this restriction may be relaxed, though convenient

methods for constructing and representing such a tiling and for using it to mapα-cuts may

not exist.

The disadvantages of tiling the search space become clearer as the number of design

variables grows large. Each partitioning ofDd
ε requires the evaluation of an experiment

design for each of the two new tiles created. Only half of the previously evaluated points

can be reused. Thus each partitioning adds one complete experiment to the total number of

points evaluated. For two design variables, one central composite design requires only nine

evaluations. Four tiles that partitionDd
ε in both variables require a total of 36 evaluations.

For eight design variables, each resolution III central composite design requires 29 evalu-

ations. Sixteen tiles that partitionDd
ε in four of the eight variables requires a total of 464

evaluations. Asn increases, the number of points evaluated in each experiment, the num-

ber of potentially non-linear variables, and hence the number of necessary partitions, all

increase. A test implementation of tiling expended a rapidly increasing number of function

evaluations as the fractional precision was refined. Moreover, it was difficult to determine

whether, for a given fractional precision, the algorithm could complete its calculation in

any reasonable length of time: the number of function evaluations required was impossible

to predict.
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